To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\unicode[STIX]{x1D701}(s)$ be the Riemann zeta function. In 1929, Hardy and Littlewood proved the approximate functional equation for $\unicode[STIX]{x1D701}^{2}(s)$ with error term $O(x^{1/2-\unicode[STIX]{x1D70E}}((x+y)/|t|)^{1/4}\log |t|)$, where $-1/2<\unicode[STIX]{x1D70E}<3/2,x,y\geqslant 1,xy=(|t|/2\unicode[STIX]{x1D70B})^{2}$. Later, in 1938, Titchmarsh improved the error term by removing the factor $((x+y)/|t|)^{1/4}$. In 1999, Hall showed the approximate functional equations for $\unicode[STIX]{x1D701}^{\prime }(s)^{2},\unicode[STIX]{x1D701}(s)\unicode[STIX]{x1D701}^{\prime \prime }(s)$, and $\unicode[STIX]{x1D701}^{\prime }(s)\unicode[STIX]{x1D701}^{\prime \prime }(s)$ (in the range $0<\unicode[STIX]{x1D70E}<1$) whose error terms contain the factor $((x+y)/|t|)^{1/4}$. In this paper we remove this factor from these three error terms by using the method of Titchmarsh.
We present the geometry behind counting twin prime polynomials in $\mathbb{F}_{q}[T]$ in general. We compute cohomology and explicitly count points by means of a twisted Lefschetz trace formula applied to these parametrizing varieties for cubic twin prime polynomials. The elliptic curve $X^{3}=Y(Y-1)$ occurs in the geometry, and thus counting cubic twin prime polynomials involves the associated modular form. In theory, this approach can be extended to higher degree twin primes, but the computations become harder.
The formula we get in degree 3 is compatible with the Hardy–Littlewood heuristic on average, agrees with the prediction for $q\equiv 2$ (mod 3), but shows anomalies for $q\equiv 1$ (mod 3).
We establish class field theory for three-dimensional manifolds and knots. For this purpose, we formulate analogues of the multiplicative group, the idèle class group, and ray class groups in a cocycle-theoretic way. Following the arguments in abstract class field theory, we construct reciprocity maps and verify the existence theorems.
We show that if the zeros of an automorphic $L$-function are weighted by the central value of the $L$-function or a quadratic imaginary base change, then for certain families of holomorphic GL(2) newforms, it has the effect of changing the distribution type of low-lying zeros from orthogonal to symplectic, for test functions whose Fourier transforms have sufficiently restricted support. However, if the $L$-value is twisted by a nontrivial quadratic character, the distribution type remains orthogonal. The proofs involve two vertical equidistribution results for Hecke eigenvalues weighted by central twisted $L$-values. One of these is due to Feigon and Whitehouse, and the other is new and involves an asymmetric probability measure that has not appeared in previous equidistribution results for GL(2).
Suppose that N is 2-coloured. Then there are infinitely many monochromatic solutions to $x+y=z^{2}$. On the other hand, there is a 3-colouring of N with only finitely many monochromatic solutions to this equation.
We prove that if $C$ is a reflexive smooth plane curve of degree $d$ defined over a finite field $\mathbb{F}_{q}$ with $d\leqslant q+1$, then there is an $\mathbb{F}_{q}$-line $L$ that intersects $C$ transversely. We also prove the same result for non-reflexive curves of degree $p+1$ and $2p+1$ when $q=p^{r}$.
In this article we explore the interplay between two generalizations of the Whittaker model, namely the Klyachko models and the degenerate Whittaker models, and two functorial constructions, namely base change and automorphic induction, for the class of unitarizable and ladder representations of the general linear groups.
Since Rob Pollack and Glenn Stevens used overconvergent modular symbols to construct $p$-adic $L$-functions for non-critical slope rational modular forms, the theory has been extended to construct $p$-adic $L$-functions for non-critical slope automorphic forms over totally real and imaginary quadratic fields by the first and second authors, respectively. In this paper, we give an analogous construction over a general number field. In particular, we start by proving a control theorem stating that the specialisation map from overconvergent to classical modular symbols is an isomorphism on the small slope subspace. We then show that if one takes the modular symbol attached to a small slope cuspidal eigenform, then one can construct a ray class distribution from the corresponding overconvergent symbol, which moreover interpolates critical values of the $L$-function of the eigenform. We prove that this distribution is independent of the choices made in its construction. We define the $p$-adic $L$-function of the eigenform to be this distribution.
We prove a function field analogue of Maynard’s celebrated result about primes with restricted digits. That is, for certain ranges of parameters $n$ and $q$, we prove an asymptotic formula for the number of irreducible polynomials of degree $n$ over a finite field $\mathbb{F}_{q}$ whose coefficients are restricted to lie in a given subset of $\mathbb{F}_{q}$.
In this paper, we derive geometric and analytic properties of invariant sets, including orbit closures, of a large class of piecewise-affine maps $T$ on $\mathbb{R}^{d}$. We assume that (i) $T$ consists of finitely many affine maps defined on a Borel measurable partition of $\mathbb{R}^{d}$, (ii) there is a lattice $\mathscr{L}\subset \mathbb{R}^{d}$ that contains all of the mutual differences of the translation vectors of these affine maps, and (iii) all of the affine maps have the same linear part that is an automorphism of $\mathscr{L}$. We prove that finite-volume invariant sets of such piecewise-affine maps always consist of translational tiles relative to this lattice, up to some multiplicity. When the partition is Jordan measurable, we show that closures of bounded orbits of $T$ are invariant and yield Jordan measurable tiles, again up to some multiplicity. In the latter case, we show that compact $T$-invariant sets also consist of Jordan measurable tiles. We then utilize these results to quantify the rate of convergence of ergodic averages for $T$ in the case of bounded single tiles.
Katz and Sarnak predicted that the one level density of the zeros of a family of L-functions would fall into one of five categories. In this paper, we show that the one level density for L-functions attached to cubic Galois number fields falls into the category associated with unitary matrices.
We show that Hermite’s theorem fails for every integer $n$ of the form $3^{k_{1}}+3^{k_{2}}+3^{k_{3}}$ with integers $k_{1}>k_{2}>k_{3}\geqslant 0$. This confirms a conjecture of Brassil and Reichstein. We also obtain new results for the relative Hermite–Joubert problem over a finitely generated field of characteristic 0.
Darmon, Lauder, and Rotger conjectured that the relative tangent space of an eigencurve at a classical, ordinary, irregular weight one point is of dimension two. This space can be identified with the space of normalized overconvergent generalized eigenforms, whose Fourier coefficients can be conjecturally described explicitly in terms of $p$-adic logarithms of algebraic numbers. This article presents the proof of this conjecture in the case where the weight one point is the intersection of two Hida families of Hecke theta series.
We answer a challenge posed in Booker [$L$-functions as distributions. Math. Ann.363(1–2) (2015), 423–454, §1.3] by proving a version of Weil’s converse theorem [Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann.168 (1967), 149–156] that assumes a functional equation for character twists but allows their root numbers to vary arbitrarily.
We generalize a method of Conrey and Ghosh [Simple zeros of the Ramanujan $\unicode[STIX]{x1D70F}$-Dirichlet series. Invent. Math.94(2) (1988), 403–419] to prove quantitative estimates for simple zeros of modular form $L$-functions of arbitrary conductor.
We aim to re-prove a theorem conjectured by Gauss, namely there are exactly nine imaginary quadratic fields $\mathbf{Q}(\sqrt{-q})$ with class number one: specifically the list is $q\in \{3,4,7,8,11,19,43,67,163\}$. Our method initially follows an idea of Goldfeld, but rather than using an elliptic curve of analytic rank three (provided by the Gross–Zagier theorem), we instead use an elliptic curve of analytic rank two, where this $L$-function vanishing can be proven by modular symbols rather than a difficult height formula. It is already clear that Goldfeld’s work yields a constant lower bound for the class number by such means, but unfortunately it seems that even for the best choice of elliptic curve this numerical constant is less than 1, unless one can show non-trivial cancellation in the $L$-function coefficients restricted to values taken by quadratic forms. To show the latter, we consider a specific analytic rank-two elliptic curve with complex multiplication by $\mathbf{Q}(\sqrt{-1})$, and then by adapting a result of Hooley’s regarding equi-distrbution of roots of a quadratic polynomial to varying moduli, are able to show that there is indeed sufficient coefficient cancellation, giving an effective resolution of class number one. As we use various aspects of the principal form, our proof seems inapplicable for larger class numbers. We also comment on the possibility of using spectral techniques (following Templier and Tsimerman) to show the desired coefficient cancellation, though postpone the details of this to elsewhere.
We establish Diophantine inequalities for the fractional parts of generalized polynomials, in particular for sequences $\unicode[STIX]{x1D708}(n)=\lfloor n^{c}\rfloor +n^{k}$ with $c>1$ a non-integral real number and $k\in \mathbb{N}$, as well as for $\unicode[STIX]{x1D708}(p)$ where $p$ runs through all prime numbers. This is related to classical work of Heilbronn and to recent results of Bergelson et al.
In this paper we study the number of rational points on curves in an ensemble of abelian covers of the projective line: let $\ell$ be a prime, $q$ a prime power and consider the ensemble ${\mathcal{H}}_{g,\ell }$ of $\ell$-cyclic covers of $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ of genus $g$. We assume that $q\not \equiv 0,1~\text{mod}~\ell$. If $2g+2\ell -2\not \equiv 0~\text{mod}~(\ell -1)\operatorname{ord}_{\ell }(q)$, then ${\mathcal{H}}_{g,\ell }$ is empty. Otherwise, the number of rational points on a random curve in ${\mathcal{H}}_{g,\ell }$ distributes as $\sum _{i=1}^{q+1}X_{i}$ as $g\rightarrow \infty$, where $X_{1},\ldots ,X_{q+1}$ are independent and identically distributed random variables taking the values $0$ and $\ell$ with probabilities $(\ell -1)/\ell$ and $1/\ell$, respectively. The novelty of our result is that it works in the absence of a primitive $\ell$th root of unity, the presence of which was crucial in previous studies.
We generalize the work of Sarnak and Tsimerman to twisted sums of Kloosterman sums and thus give evidence towards the twisted Linnik–Selberg conjecture.