To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any prime number $p$ and field $k$, we characterize the $p$-retract rationality of an algebraic $k$-torus in terms of its character lattice. We show that a $k$-torus is retract rational if and only if it is $p$-retract rational for every prime $p$, and that the Noether problem for retract rationality for a group of multiplicative type $G$ has an affirmative answer for $G$ if and only if the Noether problem for $p$-retract rationality for $G$ has a positive answer for all $p$. For every finite set of primes $S$ we give examples of tori that are $p$-retract rational if and only if $p\notin S$.
May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ4–o(1) but not O(δ4).
Let M(δ) be the maximum number such that the following holds: for every ∊ > 0 and $G = {\mathbb{F}}_2^n$ with n sufficiently large, if A ⊆ G × G with A ≥ δ|G|2, then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” (x, y), (x + d, y), (x, y + d) ∈ A is at least (M(δ)–∊)|G|2. As a corollary via a recent result of Mandache, we conclude that M(δ) = δ4–o(1) and M(δ) = ω(δ4).
On the other hand, for 0 < δ < 1/2 and sufficiently large N, there exists A ⊆ [N]3 with |A| ≥ δN3 such that for every d ≠ 0, the number of corners (x, y, z), (x + d, y, z), (x, y + d, z), (x, y, z + d) ∈ A is at most δc log(1/δ)N3. A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3.
Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a sufficient condition for $T$ and $S$ to have the same generic points. We also give an uncountable family of maps which share the same set of generic points.
We investigate the growth rate of the Birkhoff sums $S_{n,\unicode[STIX]{x1D6FC}}f(x)=\sum _{k=0}^{n-1}f(x+k\unicode[STIX]{x1D6FC})$, where $f$ is a continuous function with zero mean defined on the unit circle $\mathbb{T}$ and $(\unicode[STIX]{x1D6FC},x)$ is a ‘typical’ element of $\mathbb{T}^{2}$. The answer depends on the meaning given to the word ‘typical’. Part of the work will be done in a more general context.
Let $n$ be a positive integer and $a$ an integer prime to $n$. Multiplication by $a$ induces a permutation over $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots ,\overline{n-1}\}$. Lerch’s theorem gives the sign of this permutation. We explore some applications of Lerch’s result to permutation problems involving quadratic residues modulo $p$ and confirm some conjectures posed by Sun [‘Quadratic residues and related permutations and identities’, Preprint, 2018, arXiv:1809.07766]. We also study permutations involving arbitrary $k$th power residues modulo $p$ and primitive roots modulo a power of $p$.
A polynomial $f$ over a finite field $\mathbb{F}_{q}$ can be classified as a permutation polynomial by the Hermite–Dickson criterion, which consists of conditions on the powers $f^{e}$ for each $e$ from $1$ to $q-2$, as well as the existence of a unique solution to $f(x)=0$ in $\mathbb{F}_{q}$. Carlitz and Lutz gave a variant of the criterion. In this paper, we provide an alternate proof to the theorem of Carlitz and Lutz.
We give an algorithmic generalisation of Dickson’s method of classifying permutation polynomials (PPs) of a given degree $d$ over finite fields. Dickson’s idea is to formulate from Hermite’s criterion several polynomial equations satisfied by the coefficients of an arbitrary PP of degree $d$. Previous classifications of PPs of degree at most 6 were essentially deduced from manual analysis of these polynomial equations, but this approach is no longer viable for $d>6$. Our idea is to calculate some radicals of ideals generated by the polynomials, implemented by a computer algebra system. Our algorithms running in SageMath 8.6 on a personal computer work very fast to determine all PPs of degree 8 over an arbitrary finite field of odd order $q>8$. Such PPs exist if and only if $q\in \{11,13,19,23,27,29,31\}$ and are explicitly listed in normalised form.
Let $p$ be an odd prime number and $E$ an elliptic curve defined over a number field $F$ with good reduction at every prime of $F$ above $p$. We compute the Euler characteristics of the signed Selmer groups of $E$ over the cyclotomic $\mathbb{Z}_{p}$-extension. The novelty of our result is that we allow the elliptic curve to have mixed reduction types for primes above $p$ and mixed signs in the definition of the signed Selmer groups.
In this paper we study the subgroup of the Picard group of Voevodsky’s category of geometric motives $\operatorname{DM}_{\text{gm}}(k;\mathbb{Z}/2)$ generated by the reduced motives of affine quadrics. Our main tools here are the functors of Bachmann [On the invertibility of motives of affine quadrics, Doc. Math. 22 (2017), 363–395], but we also provide an alternative method. We show that the group in question can be described in terms of indecomposable direct summands in the motives of projective quadrics over $k$. In particular, we describe all the relations among the reduced motives of affine quadrics. We also extend the criterion of motivic equivalence of projective quadrics.
We generalize our previous method on the subconvexity problem for $\text{GL}_{2}\times \text{GL}_{1}$ with cuspidal representations to Eisenstein series, and deduce a Burgess-like subconvex bound for Hecke characters, that is, the bound $|L(1/2,\unicode[STIX]{x1D712})|\ll _{\mathbf{F},\unicode[STIX]{x1D716}}\mathbf{C}(\unicode[STIX]{x1D712})^{1/4-(1-2\unicode[STIX]{x1D703})/16+\unicode[STIX]{x1D716}}$ for varying Hecke characters $\unicode[STIX]{x1D712}$ over a number field $\mathbf{F}$ with analytic conductor $\mathbf{C}(\unicode[STIX]{x1D712})$. As a main tool, we apply the extended theory of regularized integrals due to Zagier developed in a previous paper to obtain the relevant triple product formulas of Eisenstein series.
Nous montrons, pour une grande famille de propriétés des espaces homogènes, qu’une telle propriété vaut pour tout espace homogène d’un groupe linéaire connexe dès qu’elle vaut pour les espaces homogènes de $\text{SL}_{n}$ à stabilisateur fini. Nous réduisons notamment à ce cas particulier la vérification d’une importante conjecture de Colliot-Thélène sur l’obstruction de Brauer–Manin au principe de Hasse et à l’approximation faible. Des travaux récents de Harpaz et Wittenberg montrent que le résultat principal s’applique également à la conjecture analogue (dite conjecture (E)) pour les zéro-cycles.
Such a sequence is eventually periodic and we denote by $P(n)$ the maximal period of such sequences for given $n$. We prove a new upper bound in the case where $n$ is a power of a prime $p\equiv 5\hspace{0.6em}({\rm mod}\hspace{0.2em}8)$ for which $2$ is a primitive root and the Pellian equation $x^{2}-py^{2}=-4$ has no solutions in odd integers $x$ and $y$.
Let $\unicode[STIX]{x1D6F9}:[1,\infty )\rightarrow \mathbb{R}_{+}$ be a non-decreasing function, $a_{n}(x)$ the $n$th partial quotient of $x$ and $q_{n}(x)$ the denominator of the $n$th convergent. The set of $\unicode[STIX]{x1D6F9}$-Dirichlet non-improvable numbers,
$$\begin{eqnarray}G(\unicode[STIX]{x1D6F9}):=\{x\in [0,1):a_{n}(x)a_{n+1}(x)>\unicode[STIX]{x1D6F9}(q_{n}(x))\text{ for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
is related with the classical set of $1/q^{2}\unicode[STIX]{x1D6F9}(q)$-approximable numbers ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ in the sense that ${\mathcal{K}}(3\unicode[STIX]{x1D6F9})\subset G(\unicode[STIX]{x1D6F9})$. Both of these sets enjoy the same $s$-dimensional Hausdorff measure criterion for $s\in (0,1)$. We prove that the set $G(\unicode[STIX]{x1D6F9})\setminus {\mathcal{K}}(3\unicode[STIX]{x1D6F9})$ is uncountable by proving that its Hausdorff dimension is the same as that for the sets ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ and $G(\unicode[STIX]{x1D6F9})$. This gives an affirmative answer to a question raised by Hussain et al [Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika64(2) (2018), 502–518].
We give an integrability criterion on a real-valued non-increasing function $\unicode[STIX]{x1D713}$ guaranteeing that for almost all (or almost no) pairs $(A,\mathbf{b})$, where $A$ is a real $m\times n$ matrix and $\mathbf{b}\in \mathbb{R}^{m}$, the system
is solvable in $\mathbf{p}\in \mathbb{Z}^{m}$, $\mathbf{q}\in \mathbb{Z}^{n}$ for all sufficiently large $T$. The proof consists of a reduction to a shrinking target problem on the space of grids in $\mathbb{R}^{m+n}$. We also comment on the homogeneous counterpart to this problem, whose $m=n=1$ case was recently solved, but whose general case remains open.
In this article we construct a p-adic three-dimensional eigenvariety for the group $U$(2,1)($E$), where $E$ is a quadratic imaginary field and $p$ is inert in $E$. The eigenvariety parametrizes Hecke eigensystems on the space of overconvergent, locally analytic, cuspidal Picard modular forms of finite slope. The method generalized the one developed in Andreatta, Iovita and Stevens [$p$-adic families of Siegel modular cuspforms Ann. of Math. (2) 181, (2015), 623–697] by interpolating the coherent automorphic sheaves when the ordinary locus is empty. As an application of this construction, we reprove a particular case of the Bloch–Kato conjecture for some Galois characters of $E$, extending the results of Bellaiche and Chenevier to the case of a positive sign.
Let $K$ be an algebraically closed field of prime characteristic $p$, let $X$ be a semiabelian variety defined over a finite subfield of $K$, let $\unicode[STIX]{x1D6F7}:X\longrightarrow X$ be a regular self-map defined over $K$, let $V\subset X$ be a subvariety defined over $K$, and let $\unicode[STIX]{x1D6FC}\in X(K)$. The dynamical Mordell–Lang conjecture in characteristic $p$ predicts that the set $S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$ is a union of finitely many arithmetic progressions, along with finitely many $p$-sets, which are sets of the form $\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$ for some $m\in \mathbb{N}$, some rational numbers $c_{i}$ and some non-negative integers $k_{i}$. We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $X$ is an algebraic torus, we can prove the conjecture in two cases: either when $\dim (V)\leqslant 2$, or when no iterate of $\unicode[STIX]{x1D6F7}$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $X$. We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction.
We prove two results about the width of words in $\operatorname{SL}_{n}(\mathbb{Z})$. The first is that, for every $n\geqslant 3$, there is a constant $C(n)$ such that the width of any word in $\operatorname{SL}_{n}(\mathbb{Z})$ is less than $C(n)$. The second result is that, for any word $w$, if $n$ is big enough, the width of $w$ in $\operatorname{SL}_{n}(\mathbb{Z})$ is at most 87.
We conjecture that bounded generalised polynomial functions cannot be generated by finite automata, except for the trivial case when they are ultimately periodic.
Using methods from ergodic theory, we are able to partially resolve this conjecture, proving that any hypothetical counterexample is periodic away from a very sparse and structured set. In particular, we show that for a polynomial $p(n)$ with at least one irrational coefficient (except for the constant one) and integer $m\geqslant 2$, the sequence $\lfloor p(n)\rfloor \hspace{0.2em}{\rm mod}\hspace{0.2em}m$ is never automatic.
We also prove that the conjecture is equivalent to the claim that the set of powers of an integer $k\geqslant 2$ is not given by a generalised polynomial.
For a character of the absolute Galois group of a complete discrete valuation field, we define a lifting of the refined Swan conductor, using higher dimensional class field theory.