To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we give an upper bound for the number of elements from the interval $[1,p^{1/4\sqrt{e}+\unicode[STIX]{x1D716}}]$ necessary to generate the finite field $\mathbb{F}_{p}^{\ast }$ with $p$ an odd prime. The general result depends on the distribution of the divisors of $p-1$ and can be used to deduce results which hold for almost all primes.
In characteristic two, some criteria are obtained for a symmetric square-central element of a totally decomposable algebra with orthogonal involution, to be contained in an invariant quaternion subalgebra.
We describe the ramification in cyclic extensions arising from the Kummer theory of the Weil restriction of the multiplicative group. This generalises the classical theory of Hecke describing the ramification of Kummer extensions.
Robin’s criterion states that the Riemann hypothesis is true if and only if $\unicode[STIX]{x1D70E}(n)<e^{\unicode[STIX]{x1D6FE}}n\log \log n$ for every positive integer $n\geq 5041$. In this paper we establish a new unconditional upper bound for the sum of divisors function, which improves the current best unconditional estimate given by Robin. For this purpose, we use a precise approximation for Chebyshev’s $\unicode[STIX]{x1D717}$-function.
For any integer $m\neq 0$, we prove that $f(x)=x^{9}+9mx^{6}+192m^{3}$ is irreducible over $\mathbb{Q}$ and that the Galois group of $f(x)$ over $\mathbb{Q}$ is the dihedral group of order 18. Moreover, we show that for infinitely many values of $m$, the splitting fields for $f(x)$ are distinct.
Let $A\rightarrow B$ be a morphism of Artin local rings with the same embedding dimension. We prove that any $A$-flat $B$-module is $B$-flat. This freeness criterion was conjectured by de Smit in 1997 and improves Diamond’s criterion [The Taylor–Wiles construction and multiplicity one, Invent. Math. 128 (1997), 379–391, Theorem 2.1]. We also prove that if there is a nonzero $A$-flat $B$-module, then $A\rightarrow B$ is flat and is a relative complete intersection. Then we explain how this result allows one to simplify Wiles’s proof of Fermat’s last theorem: we do not need the so-called ‘Taylor–Wiles systems’ any more.
For any odd prime $\ell$, let $h_{\ell }(-d)$ denote the $\ell$-part of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. Nontrivial pointwise upper bounds are known only for $\ell =3$; nontrivial upper bounds for averages of $h_{\ell }(-d)$ have previously been known only for $\ell =3,5$. In this paper we prove nontrivial upper bounds for the average of $h_{\ell }(-d)$ for all primes $\ell \geqslant 7$, as well as nontrivial upper bounds for certain higher moments for all primes $\ell \geqslant 3$.
Let [An,k]n,k⩾0 be an infinite lower triangular array satisfying the recurrence
for n ⩾ 1 and k ⩾ 0, where A0,0 = 1, A0,k = Ak,–1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.
Let $E_{\unicode[STIX]{x1D706}}$ be the Legendre family of elliptic curves. Given $n$ points $P_{1},\ldots ,P_{n}\in E_{\unicode[STIX]{x1D706}}(\overline{\mathbb{Q}(\unicode[STIX]{x1D706})})$, linearly independent over $\mathbb{Z}$, we prove that there are at most finitely many complex numbers $\unicode[STIX]{x1D706}_{0}$ such that $E_{\unicode[STIX]{x1D706}_{0}}$ has complex multiplication and $P_{1}(\unicode[STIX]{x1D706}_{0}),\ldots ,P_{n}(\unicode[STIX]{x1D706}_{0})$ are linearly dependent over End$(E_{\unicode[STIX]{x1D706}_{0}})$. This implies a positive answer to a question of Bertrand and, combined with a previous work in collaboration with Capuano, proves the Zilber–Pink conjecture for a curve in a fibered power of an elliptic scheme when everything is defined over $\overline{\mathbb{Q}}$.
The fractional derivatives include nonlocal information and thus their calculation requires huge storage and computational cost for long time simulations. We present an efficient and high-order accurate numerical formula to speed up the evaluation of the Caputo fractional derivative based on the L2-1σ formula proposed in [A. Alikhanov, J. Comput. Phys., 280 (2015), pp. 424-438], and employing the sum-of-exponentials approximation to the kernel function appeared in the Caputo fractional derivative. Both theoretically and numerically, we prove that while applied to solving time fractional diffusion equations, our scheme not only has unconditional stability and high accuracy but also reduces the storage and computational cost.
Let $K=\mathbb{F}_{q}(T)$ and $A=\mathbb{F}_{q}[T]$. Suppose that $\unicode[STIX]{x1D719}$ is a Drinfeld $A$-module of rank $2$ over $K$ which does not have complex multiplication. We obtain an explicit upper bound (dependent on $\unicode[STIX]{x1D719}$) on the degree of primes ${\wp}$ of $K$ such that the image of the Galois representation on the ${\wp}$-torsion points of $\unicode[STIX]{x1D719}$ is not surjective, in the case of $q$ odd. Our results are a Drinfeld module analogue of Serre’s explicit large image results for the Galois representations on $p$-torsion points of elliptic curves (Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331; Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Etudes Sci. Publ. Math. 54 (1981), 323–401.) and are unconditional because the generalized Riemann hypothesis for function fields holds. An explicit isogeny theorem for Drinfeld $A$-modules of rank $2$ over $K$ is also proven.
In this article we show that the quotient ${\mathcal{M}}_{\infty }/B(\mathbb{Q}_{p})$ of the Lubin–Tate space at infinite level ${\mathcal{M}}_{\infty }$ by the Borel subgroup of upper triangular matrices $B(\mathbb{Q}_{p})\subset \operatorname{GL}_{2}(\mathbb{Q}_{p})$ exists as a perfectoid space. As an application we show that Scholze’s functor $H_{\acute{\text{e}}\text{t}}^{i}(\mathbb{P}_{\mathbb{C}_{p}}^{1},{\mathcal{F}}_{\unicode[STIX]{x1D70B}})$ is concentrated in degree one whenever $\unicode[STIX]{x1D70B}$ is an irreducible principal series representation or a twist of the Steinberg representation of $\operatorname{GL}_{2}(\mathbb{Q}_{p})$.
We present a complex analytic proof of the Pila–Wilkie theorem for subanalytic sets. In particular, we replace the use of $C^{r}$-smooth parametrizations by a variant of Weierstrass division. As a consequence we are able to apply the Bombieri–Pila determinant method directly to analytic families without limiting the order of smoothness by a $C^{r}$ parametrization. This technique provides the key inductive step for our recent proof (in a closely related preprint) of the Wilkie conjecture for sets definable using restricted elementary functions. As an illustration of our approach we prove that the rational points of height $H$ in a compact piece of a complex-analytic set of dimension $k$ in $\mathbb{C}^{m}$ are contained in $O(1)$ complex-algebraic hypersurfaces of degree $(\log H)^{k/(m-k)}$. This is a complex-analytic analog of a recent result of Cluckers, Pila, and Wilkie for real subanalytic sets.
We prove a general formula for the $p$-adic heights of Heegner points on modular abelian varieties with potentially ordinary (good or semistable) reduction at the primes above $p$. The formula is in terms of the cyclotomic derivative of a Rankin–Selberg $p$-adic $L$-function, which we construct. It generalises previous work of Perrin-Riou, Howard, and the author to the context of the work of Yuan–Zhang–Zhang on the archimedean Gross–Zagier formula and of Waldspurger on toric periods. We further construct analytic functions interpolating Heegner points in the anticyclotomic variables, and obtain a version of our formula for them. It is complemented, when the relevant root number is $+1$ rather than $-1$, by an anticyclotomic version of the Waldspurger formula. When combined with work of Fouquet, the anticyclotomic Gross–Zagier formula implies one divisibility in a $p$-adic Birch and Swinnerton-Dyer conjecture in anticyclotomic families. Other applications described in the text will appear separately.
We classify all polynomials $P(X)\in \mathbb{Q}[X]$ with rational coefficients having the property that the quotient $(\unicode[STIX]{x1D706}_{i}-\unicode[STIX]{x1D706}_{j})/(\unicode[STIX]{x1D706}_{k}-\unicode[STIX]{x1D706}_{\ell })$ is a rational number for all quadruples of roots $(\unicode[STIX]{x1D706}_{i},\unicode[STIX]{x1D706}_{j},\unicode[STIX]{x1D706}_{k},\unicode[STIX]{x1D706}_{\ell })$ with $\unicode[STIX]{x1D706}_{k}\neq \unicode[STIX]{x1D706}_{\ell }$.
In this paper, we consider how to express an Iwahori–Whittaker function through Demazure characters. Under some interesting combinatorial conditions, we obtain an explicit formula and thereby a generalization of the Casselman–Shalika formula. Under the same conditions, we compute the transition matrix between two natural bases for the space of Iwahori fixed vectors of an induced representation of a $p$-adic group; this corrects a result of Bump–Nakasuji.
We prove the explicit version of the Buzzard–Diamond–Jarvis conjecture formulated by Dembele et al. (Serre weights and wild ramification in two-dimensional Galois representations, Preprint (2016), arXiv:1603.07708 [math.NT]). More precisely, we prove that it is equivalent to the original Buzzard–Diamond–Jarvis conjecture, which was proved for odd primes (under a mild Taylor–Wiles hypothesis) in earlier work of the third author and coauthors.
We prove some new structure results for automorphic products of singular weight. First, we give a simple characterisation of the Borcherds function $\unicode[STIX]{x1D6F7}_{12}$. Second, we show that holomorphic automorphic products of singular weight on lattices of prime level exist only in small signatures and we derive an explicit bound. Finally, we give a complete classification of reflective automorphic products of singular weight on lattices of prime level.
Deninger et Werner ont développé un analogue pour les courbes $p$-adiques de la correspondance classique de Narasimhan et Seshadri entre les fibrés vectoriels stables de degré $0$ et les représentations unitaires du groupe fondamental topologique pour une courbe complexe propre et lisse. Par transport parallèle, ils ont associé fonctoriellement à chaque fibré vectoriel sur une courbe $p$-adique, dont la réduction est fortement semi-stable de degré $0$, une représentation $p$-adique du groupe fondamental de la courbe. Ils se sont posé quelques questions : leur foncteur est-il pleinement fidèle ? La cohomologie des systèmes locaux fournis par celui-ci admet-elle une filtration de Hodge-Tate ? Leur construction est-elle compatible avec la correspondance de Simpson $p$-adique développée par Faltings ? Nous répondons à ces questions dans cet article.
We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.