To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove an explicit formula for the arithmetic intersection number of diagonal cycles on GSpin Rapoport–Zink spaces in the minuscule case. This is a local problem arising from the arithmetic Gan–Gross–Prasad conjecture for orthogonal Shimura varieties. Our formula can be viewed as an orthogonal counterpart of the arithmetic–geometric side of the arithmetic fundamental lemma proved by Rapoport–Terstiege–Zhang in the minuscule case.
In order to study $p$-adic étale cohomology of an open subvariety $U$ of a smooth proper variety $X$ over a perfect field of characteristic $p>0$, we introduce new $p$-primary torsion sheaves. It is a modification of the logarithmic de Rham–Witt sheaves of $X$ depending on effective divisors $D$ supported in $X-U$. Then we establish a perfect duality between cohomology groups of the logarithmic de Rham–Witt cohomology of $U$ and an inverse limit of those of the mentioned modified sheaves. Over a finite field, the duality can be used to study wildly ramified class field theory for the open subvariety $U$.
We establish bounds for triple exponential sums with mixed exponential and linear terms. The method we use is by Shparlinski [‘Bilinear forms with Kloosterman and Gauss sums’, Preprint, 2016, arXiv:1608.06160] together with a bound for the additive energy from Roche-Newton et al. [‘New sum-product type estimates over finite fields’, Adv. Math.293 (2016), 589–605].
We show that over any field $F$ of characteristic 2 and 2-rank $n$, there exist $2^{n}$ bilinear $n$-fold Pfister forms that have no slot in common. This answers a question of Becher [‘Triple linkage’, Ann.$K$-Theory, to appear] in the negative. We provide an analogous result also for quadratic Pfister forms.
We give a lower bound of the Mahler measure on a set of polynomials that are ‘almost’ reciprocal. Here ‘almost’ reciprocal means that the outermost coefficients of each polynomial mirror each other in proportion, while this pattern may break down for the innermost coefficients.
Let $\unicode[STIX]{x1D70C}\in (0,\infty ]$ be a real number. In this short note, we extend a recent result of Marques and Ramirez [‘On exceptional sets: the solution of a problem posed by K. Mahler’, Bull. Aust. Math. Soc.94 (2016), 15–19] by proving that any subset of $\overline{\mathbb{Q}}\cap B(0,\unicode[STIX]{x1D70C})$, which is closed under complex conjugation and contains $0$, is the exceptional set of uncountably many analytic transcendental functions with rational coefficients and radius of convergence $\unicode[STIX]{x1D70C}$. This solves the question posed by K. Mahler completely.
This paper [1], which was published online on 1 June 2011, has been retracted by agreement between the authors, the journal’s Editor-in-Chief Derek Holt, the London Mathematical Society and Cambridge University Press. The retraction was agreed to prevent other authors from using incorrect mathematical results. (In this paper, we compute and verify the positivity of the Li coefficients for the Dirichlet $L$-functions using an arithmetic formula established in Omar and Mazhouda, J. Number Theory 125 (2007) no. 1, 50–58; J. Number Theory 130 (2010) no. 4, 1109–1114. Furthermore, we formulate a criterion for the partial Riemann hypothesis and we provide some numerical evidence for it using new formulas for the Li coefficients.)
In this paper we construct a $\mathbb{Q}$-linear tannakian category $\mathsf{MEM}_{1}$ of universal mixed elliptic motives over the moduli space ${\mathcal{M}}_{1,1}$ of elliptic curves. It contains $\mathsf{MTM}$, the category of mixed Tate motives unramified over the integers. Each object of $\mathsf{MEM}_{1}$ is an object of $\mathsf{MTM}$ endowed with an action of $\text{SL}_{2}(\mathbb{Z})$ that is compatible with its structure. Universal mixed elliptic motives can be thought of as motivic local systems over ${\mathcal{M}}_{1,1}$ whose fiber over the tangential base point $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}q$ at the cusp is a mixed Tate motive. The basic structure of the tannakian fundamental group of $\mathsf{MEM}$ is determined and the lowest order terms of a set (conjecturally, a minimal generating set) of relations are deduced from computations of Brown. This set of relations includes the arithmetic relations, which describe the ‘infinitesimal Galois action’. We use the presentation to give a new and more conceptual proof of the Ihara–Takao congruences.
Let ${\mathcal{A}}=\{a_{1}<a_{2}<\cdots \,\}$ be a set of nonnegative integers. Put $D({\mathcal{A}})=\gcd \{a_{k+1}-a_{k}:k=1,2,\ldots \}$. The set ${\mathcal{A}}$ is an asymptotic basis if there exists $h$ such that every sufficiently large integer is a sum of at most $h$ (not necessarily distinct) elements of ${\mathcal{A}}$. We prove that if the difference of consecutive integers of ${\mathcal{A}}$ is bounded, then ${\mathcal{A}}$ is an asymptotic basis if and only if there exists an integer $a\in {\mathcal{A}}$ such that $(a,D({\mathcal{A}}))=1$.
The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.
We use properties of the gamma function to estimate the products $\prod _{k=1}^{n}(4k-3)/4k$ and $\prod _{k=1}^{n}(4k-1)/4k$, motivated by the work of Chen and Qi [‘Completely monotonic function associated with the gamma function and proof of Wallis’ inequality’, Tamkang J. Math.36(4) (2005), 303–307] and Mortici et al. [‘Completely monotonic functions and inequalities associated to some ratio of gamma function’, Appl. Math. Comput.240 (2014), 168–174].
For K, an imaginary quadratic field with discriminant −DK, and associated quadratic Galois character χK, Kojima, Gritsenko and Krieg studied a Hermitian Maass lift of elliptic modular cusp forms of level DK and nebentypus χK via Hermitian Jacobi forms to Hermitian modular forms of level one for the unitary group U(2, 2) split over K. We generalize this (under certain conditions on K and p) to the case of p-oldforms of level pDK and character χK. To do this, we define an appropriate Hermitian Maass space for general level and prove that it is isomorphic to the space of special Hermitian Jacobi forms. We then show how to adapt this construction to lift a Hida family of modular forms to a p-adic analytic family of automorphic forms in the Maass space of level p.
Let $q$ be an anisotropic quadratic form defined over a general field $F$. In this article, we formulate a new upper bound for the isotropy index of $q$ after scalar extension to the function field of an arbitrary quadric. On the one hand, this bound offers a refinement of an important bound established in earlier work of Karpenko–Merkurjev and Totaro; on the other hand, it is a direct generalization of Karpenko’s theorem on the possible values of the first higher isotropy index. We prove its validity in two key cases: (i) the case where $\text{char}(F)\neq 2$, and (ii) the case where $\text{char}(F)=2$ and $q$ is quasilinear (i.e., diagonalizable). The two cases are treated separately using completely different approaches, the first being algebraic–geometric, and the second being purely algebraic.
We show that the set of real polynomials in two variables that are sums of three squares of rational functions is dense in the set of those that are positive semidefinite. We also prove that the set of real surfaces in $\mathbb{P}^{3}$ whose function field has level 2 is dense in the set of those that have no real points.
In this paper we establish a general form of the mass transference principle for systems of linear forms conjectured in 2009. We also present a number of applications of this result to problems in Diophantine approximation. These include a general transference of Lebesgue measure Khintchine–Groshev type theorems to Hausdorff measure statements. The statements we obtain are applicable in both the homogeneous and inhomogeneous settings as well as allowing transference under any additional constraints on approximating integer points. In particular, we establish Hausdorff measure counterparts of some Khintchine–Groshev type theorems with primitivity constraints recently proved by Dani, Laurent and Nogueira.
Subconvexity bounds on the critical line are proved for general Epstein zeta-functions of $k$-ary quadratic forms. This is related to sup-norm bounds for unitary Eisenstein series on $\text{GL}(k)$ associated with the maximal parabolic of type $(k-1,1)$, and the exact sup-norm exponent is determined to be $(k-2)/8$ for $k\geqslant 4$. In particular, if $k$ is odd, this exponent is not in $\frac{1}{4}\mathbb{Z}$, which is relevant in the context of Sarnak’s purity conjecture and shows that it can in general not directly be generalized to Eisenstein series.
Using elementary means, we improve an explicit bound on the divisor function due to Friedlander and Iwaniec [Opera de Cribro, American Mathematical Society, Providence, RI, 2010]. Consequently, we modestly improve a result regarding a sieving inequality for Gaussian sequences.
In this paper, we prove some conjectures of K. Stolarsky concerning the first and third moments of the Beatty sequences with the golden section and its square.
Let $G$ be a semisimple Lie group with associated symmetric space $D$, and let $\unicode[STIX]{x1D6E4}\subset G$ be a cocompact arithmetic group. Let $\mathscr{L}$ be a lattice inside a $\mathbb{Z}\unicode[STIX]{x1D6E4}$-module arising from a rational finite-dimensional complex representation of $G$. Bergeron and Venkatesh recently gave a precise conjecture about the growth of the order of the torsion subgroup $H_{i}(\unicode[STIX]{x1D6E4}_{k};\mathscr{L})_{\operatorname{tors}}$ as $\unicode[STIX]{x1D6E4}_{k}$ ranges over a tower of congruence subgroups of $\unicode[STIX]{x1D6E4}$. In particular, they conjectured that the ratio $\log |H_{i}(\unicode[STIX]{x1D6E4}_{k};\mathscr{L})_{\operatorname{tors}}|/[\unicode[STIX]{x1D6E4}:\unicode[STIX]{x1D6E4}_{k}]$ should tend to a nonzero limit if and only if $i=(\dim (D)-1)/2$ and $G$ is a group of deficiency $1$. Furthermore, they gave a precise expression for the limit. In this paper, we investigate computationally the cohomology of several (non-cocompact) arithmetic groups, including $\operatorname{GL}_{n}(\mathbb{Z})$ for $n=3,4,5$ and $\operatorname{GL}_{2}(\mathscr{O})$ for various rings of integers, and observe its growth as a function of level. In all cases where our dataset is sufficiently large, we observe excellent agreement with the same limit as in the predictions of Bergeron–Venkatesh. Our data also prompts us to make two new conjectures on the growth of torsion not covered by the Bergeron–Venkatesh conjecture.
Let $E$ be an elliptic curve over a field $k$. Let $R:=\operatorname{End}E$. There is a functor $\mathscr{H}\!\mathit{om}_{R}(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\operatorname{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories. We also prove a partial generalization in which $E$ is replaced by a suitable higher-dimensional abelian variety over $\mathbb{F}_{p}$.