To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It has been known since Vinogradov that, for irrational $\unicode[STIX]{x1D6FC}$, the sequence of fractional parts $\{\unicode[STIX]{x1D6FC}p\}$ is equidistributed in $\mathbb{R}/\mathbb{Z}$ as $p$ ranges over primes. There is a natural second-order equidistribution property, a pair correlation of such fractional parts, which has recently received renewed interest, in particular regarding its relation to additive combinatorics. In this paper we show that the primes do not enjoy this stronger equidistribution property.
We investigate the approximation of quadratic Dirichlet $L$-functions over function fields by truncations of their Euler products. We first establish representations for such $L$-functions as products over prime polynomials times products over their zeros. This is the hybrid formula in function fields. We then prove that partial Euler products are good approximations of an $L$-function away from its zeros and that, when the length of the product tends to infinity, we recover the original $L$-function. We also obtain explicit expressions for the arguments of quadratic Dirichlet $L$-functions over function fields and for the arguments of their partial Euler products. In the second part of the paper we construct, for each quadratic Dirichlet $L$-function over a function field, an auxiliary function based on the approximate functional equation that equals the $L$-function on the critical line. We also construct a parametrized family of approximations of these auxiliary functions and prove that the Riemann hypothesis holds for them and that their zeros are related to those of the associated $L$-function. Finally, we estimate the counting function for the zeros of this family of approximations, show that these zeros cluster near those of the associated $L$-function, and that, when the parameter is not too large, almost all the zeros of the approximations are simple.
Let $A$ be a set of natural numbers. Recent work has suggested a strong link between the additive energy of $A$ (the number of solutions to $a_{1}+a_{2}=a_{3}+a_{4}$ with $a_{i}\in A$) and the metric Poissonian property, which is a fine-scale equidistribution property for dilates of $A$ modulo $1$. There appears to be reasonable evidence to speculate a sharp Khinchin-type threshold, that is, to speculate that the metric Poissonian property should be completely determined by whether or not a certain sum of additive energies is convergent or divergent. In this article, we primarily address the convergence theory, in other words the extent to which having a low additive energy forces a set to be metric Poissonian.
We study the Goldbach problem for primes represented by the polynomial $x^{2}+y^{2}+1$. The set of such primes is sparse in the set of all primes, but the infinitude of such primes was established by Linnik. We prove that almost all even integers $n$ satisfying certain necessary local conditions are representable as the sum of two primes of the form $x^{2}+y^{2}+1$. This improves a result of Matomäki, which tells us that almost all even $n$ satisfying a local condition are the sum of one prime of the form $x^{2}+y^{2}+1$ and one generic prime. We also solve the analogous ternary Goldbach problem, stating that every large odd $n$ is the sum of three primes represented by our polynomial. As a byproduct of the proof, we show that the primes of the form $x^{2}+y^{2}+1$ contain infinitely many three-term arithmetic progressions, and that the numbers $\unicode[STIX]{x1D6FC}p~(\text{mod}~1)$, with $\unicode[STIX]{x1D6FC}$ irrational and $p$ running through primes of the form $x^{2}+y^{2}+1$, are distributed rather uniformly.
Let $P^{+}(n)$ denote the largest prime factor of the integer $n$ and $P_{y}^{+}(n)$ denote the largest prime factor $p$ of $n$ which satisfies $p\leqslant y$. In this paper, first we show that the triple consecutive integers with the two patterns $P^{+}(n-1)>P^{+}(n)<P^{+}(n+1)$ and $P^{+}(n-1)<P^{+}(n)>P^{+}(n+1)$ have a positive proportion respectively. More generally, with the same methods we can prove that for any$J\in \mathbb{Z}$, $J\geqslant 3$, the $J$-tuple consecutive integers with the two patterns $P^{+}(n+j_{0})=\min _{0\leqslant j\leqslant J-1}P^{+}(n+j)$ and $P^{+}(n+j_{0})=\max _{0\leqslant j\leqslant J-1}P^{+}(n+j)$ also have a positive proportion, respectively. Second, for $y=x^{\unicode[STIX]{x1D703}}$ with $0<\unicode[STIX]{x1D703}\leqslant 1$ we show that there exists a positive proportion of integers $n$ such that $P_{y}^{+}(n)<P_{y}^{+}(n+1)$. Specifically, we can prove that the proportion of integers $n$ such that $P^{+}(n)<P^{+}(n+1)$ is larger than 0.1356, which improves the previous result “0.1063” of the author.
We prove that the exponent of distribution of $\unicode[STIX]{x1D70F}_{3}$ in arithmetic progressions can be as large as $\frac{1}{2}+\frac{1}{34}$, provided that the moduli is squarefree and has only sufficiently small prime factors. The tools involve arithmetic exponent pairs for algebraic trace functions, as well as a double $q$-analogue of the van der Corput method for smooth bilinear forms.
Let $\Vert \cdots \Vert$ denote distance from the integers. Let $\unicode[STIX]{x1D6FC}$, $\unicode[STIX]{x1D6FD}$, $\unicode[STIX]{x1D6FE}$ be real numbers with $\unicode[STIX]{x1D6FC}$ irrational. We show that the inequality
has infinitely many solutions in primes $p$, sharpening a result due to Harman [On the distribution of $\unicode[STIX]{x1D6FC}p$ modulo one II. Proc. Lond. Math. Soc. (3)72 (1996), 241–260] in the case $\unicode[STIX]{x1D6FD}=0$ and Baker [Fractional parts of polynomials over the primes. Mathematika63 (2017), 715–733] in the general case.
In the paper, we provide an effective criterion for the Lipschitz equivalence of two-branch Cantor sets and three-branch Cantor sets by studying the irreducibility of polynomials. We also find that any two Cantor sets are Lipschitz equivalent if and only if their contraction vectors are equivalent provided one of the contraction vectors is homogeneous.
Let $s\geqslant 3$ be a fixed positive integer and let $a_{1},\ldots ,a_{s}\in \mathbb{Z}$ be arbitrary. We show that, on average over $k$, the density of numbers represented by the degree $k$ diagonal form
We establish a combinatorial realization of continued fractions as quotients of cardinalities of sets. These sets are sets of perfect matchings of certain graphs, the snake graphs, that appear naturally in the theory of cluster algebras. To a continued fraction $[a_{1},a_{2},\ldots ,a_{n}]$ we associate a snake graph ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ such that the continued fraction is the quotient of the number of perfect matchings of ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ and ${\mathcal{G}}[a_{2},\ldots ,a_{n}]$. We also show that snake graphs are in bijection with continued fractions. We then apply this connection between cluster algebras and continued fractions in two directions. First we use results from snake graph calculus to obtain new identities for the continuants of continued fractions. Then we apply the machinery of continued fractions to cluster algebras and obtain explicit direct formulas for quotients of elements of the cluster algebra as continued fractions of Laurent polynomials in the initial variables. Building on this formula, and using classical methods for infinite periodic continued fractions, we also study the asymptotic behavior of quotients of elements of the cluster algebra.
A recent result by the authors gives an explicit construction for a universal deformation of a formal group $\unicode[STIX]{x1D6F7}$ of finite height over a finite field $k$. This provides in particular a parametrization of the set of deformations of $\unicode[STIX]{x1D6F7}$ over the ring ${\mathcal{O}}$ of Witt vectors over $k$. Another parametrization of the same set can be obtained through the Dieudonné theory. We find an explicit relation between these parameterizations. As a consequence, we obtain an explicit expression for the action of $\text{Aut}_{k}(\unicode[STIX]{x1D6F7})$ on the set of ${\mathcal{O}}$-deformations of $\unicode[STIX]{x1D6F7}$ in the coordinate system defined by the universal deformation. This generalizes a formula of Gross and Hopkins and the authors’ result for one-dimensional formal groups.
Let f : ℕ → ℂ be a bounded multiplicative function. Let a be a fixed non-zero integer (say a = 1). Then f is well distributed on the progression n ≡ a (mod q) ⊂ {1,…, X}, for almost all primes q ∈ [Q, 2Q], for Q as large as X1/2+1/78−o(1).
We present a new construction of the $p$-adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$ via the patching method of Taylor–Wiles and Kisin. This construction sheds light on the relationship between the various other approaches to both the local and the global aspects of the $p$-adic Langlands program; in particular, it gives a new proof of many cases of the second author’s local–global compatibility theorem and relaxes a hypothesis on the local mod $p$ representation in that theorem.
Let $p$ be a prime number and $F$ a totally real number field. For each prime $\mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_{\mathfrak{p}}$ acting on $(\text{mod}\,p^{m})$ Katz Hilbert modular classes which agrees with the classical Hecke operator at $\mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of Calegari and Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight $\mathbf{1}$ are unramified at $p$ when $[F:\mathbb{Q}]=2$. Some partial and some conjectural results are obtained when $[F:\mathbb{Q}]>2$.
Estimating averages of Dirichlet convolutions $1\ast \unicode[STIX]{x1D712}$, for some real Dirichlet character $\unicode[STIX]{x1D712}$ of fixed modulus, over the sparse set of values of binary forms defined over $\mathbb{Z}$ has been the focus of extensive investigations in recent years, with spectacular applications to Manin’s conjecture for Châtelet surfaces. We introduce a far-reaching generalisation of this problem, in particular replacing $\unicode[STIX]{x1D712}$ by Jacobi symbols with both arguments having varying size, possibly tending to infinity. The main results of this paper provide asymptotic estimates and lower bounds of the expected order of magnitude for the corresponding averages. All of this is performed over arbitrary number fields by adapting a technique of Daniel specific to $1\ast 1$. This is the first time that divisor sums over values of binary forms are asymptotically evaluated over any number field other than $\mathbb{Q}$. Our work is a key step in the proof, given in subsequent work, of the lower bound predicted by Manin’s conjecture for all del Pezzo surfaces over all number fields, under mild assumptions on the Picard number.
We prove a positive characteristic version of Ax’s theorem on the intersection of an algebraic subvariety and an analytic subgroup of an algebraic group [Ax, Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups, Amer. J. Math.94 (1972), 1195–1204]. Our result is stated in a more general context of a formal map between an algebraic variety and an algebraic group. We derive transcendence results of Ax–Schanuel type.
Let $K$ be a (non-archimedean) local field and let $F$ be the function field of a curve over $K$. Let $D$ be a central simple algebra over $F$ of period $n$ and $\unicode[STIX]{x1D706}\in F^{\ast }$. We show that if $n$ is coprime to the characteristic of the residue field of $K$ and $D\cdot (\unicode[STIX]{x1D706})=0$ in $H^{3}(F,\unicode[STIX]{x1D707}_{n}^{\otimes 2})$, then $\unicode[STIX]{x1D706}$ is a reduced norm from $D$. This leads to a Hasse principle for the group $\operatorname{SL}_{1}(D)$, namely, an element $\unicode[STIX]{x1D706}\in F^{\ast }$ is a reduced norm from $D$ if and only if it is a reduced norm locally at all discrete valuations of $F$.
In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$
Eisenstein classes of Siegel varieties are motivic cohomology classes defined as pull-backs by torsion sections of the polylogarithm prosheaf on the universal abelian scheme. By reduction to the Hilbert–Blumenthal case, we prove that the Betti realization of these classes on Siegel varieties of arbitrary genus have non-trivial residue on zero-dimensional strata of the Baily–Borel–Satake compactification. A direct corollary is the non-vanishing of a higher regulator map.