To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $P_{1},\ldots ,P_{k}:\mathbb{Z}\rightarrow \mathbb{Z}$ be polynomials of degree at most $d$ for some $d\geqslant 1$, with the degree $d$ coefficients all distinct, and admissible in the sense that for every prime $p$, there exists integers $n,m$ such that $n+P_{1}(m),\ldots ,n+P_{k}(m)$ are all not divisible by $p$. We show that there exist infinitely many natural numbers $n,m$ such that $n+P_{1}(m),\ldots ,n+P_{k}(m)$ are simultaneously prime, generalizing a previous result of the authors, which was restricted to the special case $P_{1}(0)=\cdots =P_{k}(0)=0$ (though it allowed for the top degree coefficients to coincide). Furthermore, we obtain an asymptotic for the number of such prime pairs $n,m$ with $n\leqslant N$ and $m\leqslant M$ with $M$ slightly less than $N^{1/d}$. This asymptotic is already new in general in the homogeneous case $P_{1}(0)=\cdots =P_{k}(0)=0$. Our arguments rely on four ingredients. The first is a (slightly modified) generalized von Neumann theorem of the authors, reducing matters to controlling certain averaged local Gowers norms of (suitable normalizations of) the von Mangoldt function. The second is a more recent concatenation theorem of the authors, controlling these averaged local Gowers norms by global Gowers norms. The third ingredient is the work of Green and the authors on linear equations in primes, allowing one to compute these global Gowers norms for the normalized von Mangoldt functions. Finally, we use the Conlon–Fox–Zhao densification approach to the transference principle to combine the preceding three ingredients together. In the special case $P_{1}(0)=\cdots =P_{k}(0)=0$, our methods also give infinitely many $n,m$ with $n+P_{1}(m),\ldots ,n+P_{k}(m)$ in a specified set primes of positive relative density $\unicode[STIX]{x1D6FF}$, with $m$ bounded by $\log ^{L}n$ for some $L$ independent of the density $\unicode[STIX]{x1D6FF}$. This improves slightly on a result from our previous paper, in which $L$ was allowed to depend on $\unicode[STIX]{x1D6FF}$.
Let 𝔽q be the finite field of q elements. An analogue of the regular continued fraction expansion for an element α in the field of formal Laurent series over 𝔽q is given uniquely by
where $(A_{n}(\alpha))_{n=0}^{\infty}$ is a sequence of polynomials with coefficients in 𝔽q such that deg(An(α)) ⩾1 for all n ⩾ 1. In this paper, we provide quantitative versions of metrical results regarding averages of partial quotients. A sample result we prove is that, given any ϵ > 0, we have
with $y\neq 0$, $k\geqslant 3$, $\ell \geqslant 2,$ a prime and for $i\in [2,k]\setminus \unicode[STIX]{x1D6FA}$, we show that $\ell <\text{e}^{3^{k}}.$ Here $\unicode[STIX]{x1D6FA}$ denotes the interval $[p_{\unicode[STIX]{x1D703}},(k-p_{\unicode[STIX]{x1D703}}))$, where $p_{\unicode[STIX]{x1D703}}$ is the least prime greater than or equal to $k/2$. Bennett and Siksek obtained a similar bound for $i=1$ in a recent paper.
Let $\unicode[STIX]{x1D703}$ be an irrational number and $\unicode[STIX]{x1D711}:\mathbb{N}\rightarrow \mathbb{R}^{+}$ be a monotone decreasing function tending to zero. Let
$$\begin{eqnarray}E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})=\{y\in \mathbb{R}:\Vert n\unicode[STIX]{x1D703}-y\Vert <\unicode[STIX]{x1D711}(n),\text{for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\unicode[STIX]{x1D711}(n)$. In this article, we give a complete description of the Hausdorff dimension of $E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})$ for any monotone function $\unicode[STIX]{x1D711}$ and any irrational $\unicode[STIX]{x1D703}$.
We study a kernel function of the twisted symmetric square $L$-function of elliptic modular forms. As an application, several exact special values of the $L$-function are computed.
We formulate some conjectures about the precise determination of the monodromy groups of certain rigid local systems on $\mathbb{A}^{1}$ whose monodromy groups are known, by results of Kubert, to be finite. We prove some of them.
Let $L(s,\unicode[STIX]{x1D712})$ be the Dirichlet $L$-function associated to a non-principal primitive character $\unicode[STIX]{x1D712}$ modulo $q$ with $3\leqslant q\leqslant 400\,000$. We prove a new explicit zero-free region for $L(s,\unicode[STIX]{x1D712})$: $L(s,\unicode[STIX]{x1D712})$ does not vanish in the region $\mathfrak{Re}\,s\geqslant 1-1/(R\log (q\max (1,|\mathfrak{Im}\,s|)))$ with $R=5.60$. This improves a result of McCurley where $9.65$ was shown to be an admissible value for $R$.
Let $\unicode[STIX]{x1D6E4}\subseteq \operatorname{PSL}(2,\mathbf{R})$ be a finite-volume Fuchsian group. The hyperbolic circle problem is the estimation of the number of elements of the $\unicode[STIX]{x1D6E4}$-orbit of $z$ in a hyperbolic circle around $w$ of radius $R$, where $z$ and $w$ are given points of the upper half plane and $R$ is a large number. An estimate with error term $\text{e}^{(2/3)R}$ is known, and this has not been improved for any group. Recently, Risager and Petridis proved that in the special case $\unicode[STIX]{x1D6E4}=\operatorname{PSL}(2,\mathbf{Z})$ taking $z=w$ and averaging over $z$ in a certain way the error term can be improved to $\text{e}^{(7/12+\unicode[STIX]{x1D716})R}$. Here we show such an improvement for a general $\unicode[STIX]{x1D6E4}$; our error term is $\text{e}^{(5/8+\unicode[STIX]{x1D716})R}$ (which is better than $\text{e}^{(2/3)R}$ but weaker than the estimate of Risager and Petridis in the case $\unicode[STIX]{x1D6E4}=\operatorname{PSL}(2,\mathbf{Z})$). Our main tool is our generalization of the Selberg trace formula proved earlier.
We prove an exact formula for the second moment of Rankin–Selberg $L$-functions $L(\frac{1}{2},f\times g)$ twisted by $\unicode[STIX]{x1D706}_{f}(p)$, where $g$ is a fixed holomorphic cusp form and $f$ is summed over automorphic forms of a given level $q$. The formula is a reciprocity relation that exchanges the twist parameter $p$ and the level $q$. The method involves the Bruggeman–Kuznetsov trace formula on both ends; finally the reciprocity relation is established by an identity of sums of Kloosterman sums.
Let $\unicode[STIX]{x1D713}:\mathbb{R}_{+}\rightarrow \mathbb{R}_{+}$ be a non-increasing function. A real number $x$ is said to be $\unicode[STIX]{x1D713}$-Dirichlet improvable if it admits an improvement to Dirichlet’s theorem in the following sense: the system
has a non-trivial integer solution for all large enough $t$. Denote the collection of such points by $D(\unicode[STIX]{x1D713})$. In this paper we prove that the Hausdorff measure of the complement $D(\unicode[STIX]{x1D713})^{c}$ (the set of $\unicode[STIX]{x1D713}$-Dirichlet non-improvable numbers) obeys a zero-infinity law for a large class of dimension functions. Together with the Lebesgue measure-theoretic results established by Kleinbock and Wadleigh [A zero-one law for improvements to Dirichlet’s theorem. Proc. Amer. Math. Soc.146 (2018), 1833–1844], our results contribute to building a complete metric theory for the set of Dirichlet non-improvable numbers.
We prove asymptotic formulas for the number of integers at most $x$ that can be written as the product of $k~({\geqslant}2)$ distinct primes $p_{1}\cdots p_{k}$ with each prime factor in an arithmetic progression $p_{j}\equiv a_{j}\hspace{0.2em}{\rm mod}\hspace{0.2em}q$, $(a_{j},q)=1$$(q\geqslant 3,1\leqslant j\leqslant k)$. For any $A>0$, our result is uniform for $2\leqslant k\leqslant A\log \log x$. Moreover, we show that there are large biases toward certain arithmetic progressions $(a_{1}\hspace{0.2em}{\rm mod}\hspace{0.2em}q,\ldots ,a_{k}\hspace{0.2em}{\rm mod}\hspace{0.2em}q)$, and such biases have connections with Mertens’ theorem and the least prime in arithmetic progressions.
We prove that for any positive integers $k,n$ with $n>\frac{3}{2}(k^{2}+k+2)$, prime $p$, and integers $c,a_{i}$, with $p\nmid a_{i}$, $1\leqslant i\leqslant n$, there exists a solution $\text{}\underline{x}$ to the congruence
with $1\leqslant {x_{i}\ll }_{k}p^{1/k}$, $1\leqslant i\leqslant n$. This upper bound is best possible. Refinements are given for smaller $n$, and for variables restricted to intervals in more general position. In particular, for any $\unicode[STIX]{x1D700}>0$ we give an explicit constant $c_{\unicode[STIX]{x1D700}}$ such that if $n>c_{\unicode[STIX]{x1D700}}k$, then there is a solution with $1\leqslant {x_{i}\ll }_{\unicode[STIX]{x1D700},k}p^{1/k+\unicode[STIX]{x1D700}}$.
Let $s(\cdot )$ denote the sum-of-proper-divisors function, that is, $s(n)=\sum _{d\mid n,~d<n}d$. Erdős, Granville, Pomerance, and Spiro conjectured that for any set $\mathscr{A}$ of asymptotic density zero, the preimage set $s^{-1}(\mathscr{A})$ also has density zero. We prove a weak form of this conjecture: if $\unicode[STIX]{x1D716}(x)$ is any function tending to $0$ as $x\rightarrow \infty$, and $\mathscr{A}$ is a set of integers of cardinality at most $x^{1/2+\unicode[STIX]{x1D716}(x)}$, then the number of integers $n\leqslant x$ with $s(n)\in \mathscr{A}$ is $o(x)$, as $x\rightarrow \infty$. In particular, the EGPS conjecture holds for infinite sets with counting function $O(x^{1/2+\unicode[STIX]{x1D716}(x)})$. We also disprove a hypothesis from the same paper of EGPS by showing that for any positive numbers $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D716}$, there are integers $n$ with arbitrarily many $s$-preimages lying between $\unicode[STIX]{x1D6FC}(1-\unicode[STIX]{x1D716})n$ and $\unicode[STIX]{x1D6FC}(1+\unicode[STIX]{x1D716})n$. Finally, we make some remarks on solutions $n$ to congruences of the form $\unicode[STIX]{x1D70E}(n)\equiv a~(\text{mod}~n)$, proposing a modification of a conjecture appearing in recent work of the first two authors. We also improve a previous upper bound for the number of solutions $n\leqslant x$, making it uniform in $a$.
We first show that every algebraic torus over any field, not necessarily split, can be realized as the special fiber of a semi-abelian scheme whose generic fiber is an absolutely simple abelian variety. Then we investigate which algebraic tori can be thus obtained, when we require the generic fiber of the semi-abelian scheme to carry non-trivial endomorphism structures.
We study a combinatorial problem that recently arose in the context of shape optimization: among all triangles with vertices $(0,0)$, $(x,0)$, and $(0,y)$ and fixed area, which one encloses the most lattice points from $\mathbb{Z}_{{>}0}^{2}$? Moreover, does its shape necessarily converge to the isosceles triangle $(x=y)$ as the area becomes large? Laugesen and Liu suggested that, in contrast to similar problems, there might not be a limiting shape. We prove that the limiting set is indeed non-trivial and contains infinitely many elements. We also show that there exist “bad” areas where no triangle is particularly good at capturing lattice points and show that there exists an infinite set of slopes $y/x$ such that any associated triangle captures more lattice points than any other fixed triangle for infinitely many (and arbitrarily large) areas; this set of slopes is a fractal subset of $[1/3,3]$ and has Minkowski dimension of at most $3/4$.
$$\begin{eqnarray}\mathfrak{P}_{n}=\mathop{\prod }_{\substack{ p \\ s_{p}(n)\geqslant p}}p,\end{eqnarray}$$
where $p$ runs over primes and $s_{p}(n)$ is the sum of the base $p$ digits of $n$. For all $n$ we prove that $\mathfrak{P}_{n}$ is divisible by all “small” primes with at most one exception. We also show that $\mathfrak{P}_{n}$ is large and has many prime factors exceeding $\sqrt{n}$, with the largest one exceeding $n^{20/37}$. We establish Kellner’s conjecture that the number of prime factors exceeding $\sqrt{n}$ grows asymptotically as $\unicode[STIX]{x1D705}\sqrt{n}/\text{log}\,n$ for some constant $\unicode[STIX]{x1D705}$ with $\unicode[STIX]{x1D705}=2$. Further, we compare the sizes of $\mathfrak{P}_{n}$ and $\mathfrak{P}_{n+1}$, leading to the somewhat surprising conclusion that although $\mathfrak{P}_{n}$ tends to infinity with $n$, the inequality $\mathfrak{P}_{n}>\mathfrak{P}_{n+1}$ is more frequent than its reverse.
We study the minimal gap statistic for fractional parts of sequences of the form ${\mathcal{A}}^{\unicode[STIX]{x1D6FC}}=\{\unicode[STIX]{x1D6FC}a(n)\}$, where ${\mathcal{A}}=\{a(n)\}$ is a sequence of distinct integers. Assuming that the additive energy of the sequence is close to its minimal possible value, we show that for almost all $\unicode[STIX]{x1D6FC}$, the minimal gap $\unicode[STIX]{x1D6FF}_{\min }^{\unicode[STIX]{x1D6FC}}(N)=\min \{\unicode[STIX]{x1D6FC}a(m)-\unicode[STIX]{x1D6FC}a(n)\hspace{0.2em}{\rm mod}\hspace{0.2em}1:1\leqslant m\neq n\leqslant N\}$ is close to that of a random sequence.
While the distribution of the non-trivial zeros of the Riemann zeta function constitutes a central theme in Mathematics, nothing is known about the algebraic nature of these non-trivial zeros. In this article, we study the transcendental nature of sums of the form
where the sum is over the non-trivial zeros $\unicode[STIX]{x1D70C}$ of $\unicode[STIX]{x1D701}(s)$, $R(x)\in \overline{\mathbb{Q}}(x)$ is a rational function over algebraic numbers and $x>0$ is a real algebraic number. In particular, we show that the function
has infinitely many zeros in $(1,\infty )$, at most one of which is algebraic. The transcendence tools required for studying $f(x)$ in the range $x<1$ seem to be different from those in the range $x>1$. For $x<1$, we have the following non-vanishing theorem: If for an integer $d\geqslant 1$, $f(\unicode[STIX]{x1D70B}\sqrt{d}x)$ has a rational zero in$(0,1/\unicode[STIX]{x1D70B}\sqrt{d})$, then
where $\unicode[STIX]{x1D712}_{-d}$ is the quadratic character associated with the imaginary quadratic field $K:=\mathbb{Q}(\sqrt{-d})$. Finally, we consider analogous questions for elements in the Selberg class. Our proofs rest on results from analytic as well as transcendental number theory.
We show that integral monodromy groups of Kloosterman $\ell$-adic sheaves of rank $n\geqslant 2$ on $\mathbb{G}_{m}/\mathbb{F}_{q}$ are as large as possible when the characteristic $\ell$ is large enough, depending only on the rank. This variant of Katz’s results over $\mathbb{C}$ was known by works of Gabber, Larsen, Nori and Hall under restrictions such as $\ell$ large enough depending on $\operatorname{char}(\mathbb{F}_{q})$ with an ineffective constant, which is unsuitable for applications. We use the theory of finite groups of Lie type to extend Katz’s ideas, in particular the classification of maximal subgroups of Aschbacher and Kleidman–Liebeck. These results will apply to study hyper-Kloosterman sums and their reductions in forthcoming work.
We generalize Skriganov’s notion of weak admissibility for lattices to include standard lattices occurring in Diophantine approximation and algebraic number theory, and we prove estimates for the number of lattice points in sets such as aligned boxes. Our result improves on Skriganov’s celebrated counting result if the box is sufficiently distorted, the lattice is not admissible, and, e.g., symplectic or orthogonal. We establish a criterion under which our error term is sharp, and we provide examples in dimensions $2$ and $3$ using continued fractions. We also establish a similar counting result for primitive lattice points, and apply the latter to the classical problem of Diophantine approximation with primitive points as studied by Chalk, Erdős, and others. Finally, we use o-minimality to describe large classes of sets to which our counting results apply.