To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In 2013, Weintraub gave a generalization of the classical Eisenstein irreducibility criterion in an attempt to correct a false claim made by Eisenstein. Using a different approach, we prove Weintraub's result with a weaker hypothesis in a more general setup that leads to an extension of the generalized Schönemann irreducibility criterion for polynomials with coefficients in arbitrary valued fields.
We investigate the monotonic characteristics of the generalised binomial coefficients (phinomials) based upon Euler’s totient function. We show, unconditionally, that the set of integers for which this sequence is unimodal is finite and, assuming the generalised Riemann hypothesis, we find all the exceptions.
The quotient set of $A\subseteq \mathbb{N}$ is defined as $R(A):=\{a/b:a,b\in A,b\neq 0\}$. Using algebraic number theory in $\mathbb{Q}(\sqrt{5})$, Garcia and Luca [‘Quotients of Fibonacci numbers’, Amer. Math. Monthly, to appear] proved that the quotient set of Fibonacci numbers is dense in the $p$-adic numbers $\mathbb{Q}_{p}$ for all prime numbers $p$. For any integer $k\geq 2$, let $(F_{n}^{(k)})_{n\geq -(k-2)}$ be the sequence of $k$-generalised Fibonacci numbers, defined by the initial values $0,0,\ldots ,0,1$ ($k$ terms) and such that each successive term is the sum of the $k$ preceding terms. We use $p$-adic analysis to generalise the result of Garcia and Luca, by proving that the quotient set of $k$-generalised Fibonacci numbers is dense in $\mathbb{Q}_{p}$ for any integer $k\geq 2$ and any prime number $p$.
This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$. We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.
We consider finite point subsets (distributions) in compact metric spaces. In the case of general rectifiable metric spaces, non-trivial bounds for sums of distances between points of distributions and for discrepancies of distributions in metric balls are given (Theorem 1.1). We generalize Stolarsky’s invariance principle to distance-invariant spaces (Theorem 2.1). For arbitrary metric spaces, we prove a probabilistic invariance principle (Theorem 3.1). Furthermore, we construct equal-measure partitions of general rectifiable compact metric spaces into parts of small average diameter (Theorem 4.1).
We transpose the parametric geometry of numbers, recently created by Schmidt and Summerer, to fields of rational functions in one variable and analyze, in that context, the problem of simultaneous approximation to exponential functions.
for infinitely many primes $p$ that supersede those of Harman [Trigonometric sums over primes I. Mathematika28 (1981), 249–254; Trigonometric sums over primes II. Glasg. Math. J.24 (1983), 23–37] and Wong [On the distribution of $\unicode[STIX]{x1D6FC}p^{k}$ modulo 1. Glasg. Math. J.39 (1997), 121–130].
We introduce a new arithmetic function $a(n)$ defined to be the number of random multiplications by residues modulo $n$ before the running product is congruent to zero modulo $n$. We give several formulas for computing the values of this function and analyze its asymptotic behavior. We find that it is closely related to $P_{1}(n)$, the largest prime divisor of $n$. In particular, $a(n)$ and $P_{1}(n)$ have the same average order asymptotically. Furthermore, the difference between the functions $a(n)$ and $P_{1}(n)$ is $o(1)$ as $n$ tends to infinity on a set with density approximately $0.623$. On the other hand, however, we see that (except on a set of density zero) the difference between $a(n)$ and $P_{1}(n)$ tends to infinity on the integers outside this set. Finally, we consider the asymptotic behavior of the difference between these two functions and find that $\sum _{n\leqslant x}(a(n)-P_{1}(n))\sim (1-\unicode[STIX]{x1D70B}/4)\sum _{n\leqslant x}P_{2}(n)$, where $P_{2}(n)$ is the second largest divisor of $n$.
Building on recent work of Bhargava, Elkies and Schnidman and of Kriz and Li, we produce infinitely many smooth cubic surfaces defined over the field of rational numbers that contain rational points.
Let $K$ be an algebraic number field of degree $d\geqslant 3$, $\unicode[STIX]{x1D70E}_{1},\unicode[STIX]{x1D70E}_{2},\ldots ,\unicode[STIX]{x1D70E}_{d}$ the embeddings of $K$ into $\mathbb{C}$, $\unicode[STIX]{x1D6FC}$ a non-zero element in $K$, $a_{0}\in \mathbb{Z}$, $a_{0}>0$ and
Let $\unicode[STIX]{x1D710}$ be a unit in $K$. For $a\in \mathbb{Z}$, we twist the binary form $F_{0}(X,Y)\in \mathbb{Z}[X,Y]$ by the powers $\unicode[STIX]{x1D710}^{a}$ ($a\in \mathbb{Z}$) of $\unicode[STIX]{x1D710}$ by setting
for which $xy\not =0$ and $\mathbb{Q}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D710}^{a})=K$. Our estimate is explicit in terms of its dependence on $m$, the regulator of $K$ and the heights of $F_{0}$ and of $\unicode[STIX]{x1D710}$; it also involves an effectively computable constant depending only on $d$.
We prove the analog of Cramér’s short intervals theorem for primes in arithmetic progressions and prime ideals, under the relevant Riemann hypothesis. Both results are uniform in the data of the underlying structure. Our approach is based mainly on the inertia property of the counting functions of primes and prime ideals.
Let $S=\{q_{1},\ldots ,q_{s}\}$ be a finite, non-empty set of distinct prime numbers. For a non-zero integer $m$, write $m=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}M$, where $r_{1},\ldots ,r_{s}$ are non-negative integers and $M$ is an integer relatively prime to $q_{1}\cdots q_{s}$. We define the $S$-part $[m]_{S}$ of $m$ by $[m]_{S}:=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}$. Let $(u_{n})_{n\geqslant 0}$ be a linear recurrence sequence of integers. Under certain necessary conditions, we establish that for every $\unicode[STIX]{x1D700}>0$, there exists an integer $n_{0}$ such that $[u_{n}]_{S}\leqslant |u_{n}|^{\unicode[STIX]{x1D700}}$ holds for $n>n_{0}$. Our proof is ineffective in the sense that it does not give an explicit value for $n_{0}$. Under various assumptions on $(u_{n})_{n\geqslant 0}$, we also give effective, but weaker, upper bounds for $[u_{n}]_{S}$ of the form $|u_{n}|^{1-c}$, where $c$ is positive and depends only on $(u_{n})_{n\geqslant 0}$ and $S$.
Define $r_{4}(N)$ to be the largest cardinality of a set $A\subset \{1,\ldots ,N\}$ that does not contain four elements in arithmetic progression. In 1998, Gowers proved that
We show that smooth-supported multiplicative functions $f$ are well distributed in arithmetic progressions $a_{1}a_{2}^{-1}\;(\text{mod}~q)$ on average over moduli $q\leqslant x^{3/5-\unicode[STIX]{x1D700}}$ with $(q,a_{1}a_{2})=1$.
In this paper, we propose a conjectural identity between the Fourier–Jacobi periods on symplectic groups and the central value of certain Rankin–Selberg $L$-functions. This identity can be viewed as a refinement to the global Gan–Gross–Prasad conjecture for $\text{Sp}(2n)\times \text{Mp}(2m)$. To support this conjectural identity, we show that when $n=m$ and $n=m\pm 1$, it can be deduced from the Ichino–Ikeda conjecture in some cases via theta correspondences. As a corollary, the conjectural identity holds when $n=m=1$ or when $n=2$, $m=1$ and the automorphic representation on the bigger group is endoscopic.
A strong quantitative form of Manin’s conjecture is established for a certain variety in biprojective space. The singular integral in an application of the circle method involves the third power of the integral sine function and is evaluated in closed form.
For a finite field of odd cardinality $q$, we show that the sequence of iterates of $aX^{2}+c$, starting at $0$, always recurs after $O(q/\text{log}\log q)$ steps. For $X^{2}+1$, the same is true for any starting value. We suggest that the traditional “birthday paradox” model is inappropriate for iterates of $X^{3}+c$, when $q$ is 2 mod 3.
By constructing suitable Borcherds forms on Shimura curves and using Schofer’s formula for norms of values of Borcherds forms at CM points, we determine all of the equations of hyperelliptic Shimura curves $X_{0}^{D}(N)$. As a byproduct, we also address the problem of whether a modular form on Shimura curves $X_{0}^{D}(N)/W_{D,N}$ with a divisor supported on CM divisors can be realized as a Borcherds form, where $X_{0}^{D}(N)/W_{D,N}$ denotes the quotient of $X_{0}^{D}(N)$ by all of the Atkin–Lehner involutions. The construction of Borcherds forms is done by solving certain integer programming problems.
Let $h(d)$ be the class number of indefinite binary quadratic forms of discriminant $d$ and let $\unicode[STIX]{x1D700}_{d}$ be the corresponding fundamental unit. In this paper, we obtain an asymptotic formula for the $k$th moment of $h(d)$ over positive discriminants $d$ with $\unicode[STIX]{x1D700}_{d}\leqslant x$, uniformly for real numbers $k$ in the range $0<k\leqslant (\log x)^{1-o(1)}$. This improves upon the work of Raulf, who obtained such an asymptotic for a fixed positive integer $k$. We also investigate the distribution of large values of $h(d)$ when the discriminants $d$ are ordered according to the size of their fundamental units $\unicode[STIX]{x1D700}_{d}$. In particular, we show that the tail of this distribution has the same shape as that of class numbers of imaginary quadratic fields ordered by the size of their discriminants. As an application of these results, we prove that there are many positive discriminants $d$ with class number $h(d)\geqslant (e^{\unicode[STIX]{x1D6FE}}/3+o(1))\cdot \unicode[STIX]{x1D700}_{d}(\log \log \unicode[STIX]{x1D700}_{d})/\log \,\unicode[STIX]{x1D700}_{d}$, a bound that we believe is best possible. We also obtain an upper bound for $h(d)$ that is twice as large, assuming the generalized Riemann hypothesis.