To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $r\geq 2$ and $s\geq 2$ be multiplicatively dependent integers. We establish a lower bound for the sum of the block complexities of the $r$-ary expansion and the $s$-ary expansion of an irrational real number, viewed as infinite words on $\{0,1,\ldots ,r-1\}$ and $\{0,1,\ldots ,s-1\}$, and we show that this bound is best possible.
We determine the Galois representations inside the $\ell$-adic cohomology of some unitary Shimura varieties at split places where they admit uniformization by finite products of Drinfeld upper half spaces. Our main results confirm Langlands–Kottwitz’s description of the cohomology of Shimura varieties in new cases.
We introduce the Hurwitz-type spectral zeta functions for the quantum Rabi models, and give their meromorphic continuation to the whole complex plane with only one simple pole at $s=1$. As an application, we give the Weyl law for the quantum Rabi models. As a byproduct, we also give a rationality of Rabi–Bernoulli polynomials introduced in this paper.
We define weight changing operators for automorphic forms on Grassmannians, that is, on orthogonal groups, and investigate their basic properties. We then evaluate their action on theta kernels, and prove that theta lifts of modular forms, in which the theta kernel involves polynomials of a special type, have some interesting differential properties.
To a pair of elliptic curves, one can naturally attach two K3 surfaces: the Kummer surface of their product and a double cover of it, called the Inose surface. They have prominently featured in many interesting constructions in algebraic geometry and number theory. There are several more associated elliptic K3 surfaces, obtained through base change of the Inose surface; these have been previously studied by Masato Kuwata. We give an explicit description of the geometric Mordell–Weil groups of each of these elliptic surfaces in the generic case (when the elliptic curves are non-isogenous). In the nongeneric case, we describe a method to calculate explicitly a finite index subgroup of the Mordell–Weil group, which may be saturated to give the full group. Our methods rely on several interesting group actions, the use of rational elliptic surfaces, as well as connections to the geometry of low degree curves on cubic and quartic surfaces. We apply our techniques to compute the full Mordell–Weil group in several examples of arithmetic interest, arising from isogenous elliptic curves with complex multiplication, for which these K3 surfaces are singular.
The aim of this paper is to develop analytic techniques to deal with the monotonicity of certain combinatorial sequences. On the one hand, a criterion for the monotonicity of the function is given, which is a continuous analogue of a result of Wang and Zhu. On the other hand, the log-behaviour of the functions
is considered, where ζ(x) and Γ(x) are the Riemann zeta function and the Euler Gamma function, respectively. Consequently, the strict log-concavities of the function θ(x) (a conjecture of Chen et al.) and for some combinatorial sequences (including the Bernoulli numbers, the tangent numbers, the Catalan numbers, the Fuss–Catalan numbers, and the binomial coefficients are demonstrated. In particular, this contains some results of Chen et al., and Luca and Stănică. Finally, by researching the logarithmically complete monotonicity of some functions, the infinite log-monotonicity of the sequence
is proved. This generalizes two results of Chen et al. that both the Catalan numbers and the central binomial coefficients are infinitely log-monotonic, and strengthens one result of Su and Wang that is log-convex in n for positive integers d > δ. In addition, the asymptotically infinite log-monotonicity of derangement numbers is showed. In order to research the stronger properties of the above functions θ(x) and F(x), the logarithmically complete monotonicity of functions
is also obtained, which generalizes the results of Lee and Tepedelenlioǧlu, and Qi and Li.
We attempt to discuss a new circle problem. Let $\unicode[STIX]{x1D701}(s)$ denote the Riemann zeta-function $\sum _{n=1}^{\infty }n^{-s}$ ($\text{Re}\,s>1$) and $L(s,\unicode[STIX]{x1D712}_{4})$ the Dirichlet $L$-function $\sum _{n=1}^{\infty }\unicode[STIX]{x1D712}_{4}(n)n^{-s}$ ($\text{Re}\,s>1$) with the primitive Dirichlet character mod 4. We shall define an arithmetical function $R_{(1,1)}(n)$ by the coefficient of the Dirichlet series $\unicode[STIX]{x1D701}^{\prime }(s)L^{\prime }(s,\unicode[STIX]{x1D712}_{4})=\sum _{n=1}^{\infty }R_{(1,1)}(n)n^{-s}$$(\text{Re}\,s>1)$. This is an analogue of $r(n)/4=\sum _{d|n}\unicode[STIX]{x1D712}_{4}(d)$. In the circle problem, there are many researches of estimations and related topics on the error term in the asymptotic formula for $\sum _{n\leq x}r(n)$. As a new problem, we deduce a ‘truncated Voronoï formula’ for the error term in the asymptotic formula for $\sum _{n\leq x}R_{(1,1)}(n)$. As a direct application, we show the mean square for the error term in our new problem.
We define a multiple Dirichlet series whose group of functional equations is the Weyl group of the affine Kac–Moody root system $\widetilde{A}_{n}$, generalizing the theory of multiple Dirichlet series for finite Weyl groups. The construction is over the rational function field $\mathbb{F}_{q}(t)$, and is based upon four natural axioms from algebraic geometry. We prove that the four axioms yield a unique series with meromorphic continuation to the largest possible domain and the desired infinite group of symmetries.
Poly-Euler numbers are introduced as a generalization of the Euler numbers in a manner similar to the introduction of the poly-Bernoulli numbers. In this paper, some number-theoretic properties of poly-Euler numbers, for example, explicit formulas, a Clausen–von Staudt type formula, congruence relations and duality formulas, are given together with their combinatorial properties.
A lattice walk with all steps having the same length $d$ is called a $d$-walk. Denote by ${\mathcal{T}}_{d}$ the terminal set, that is, the set of all lattice points that can be reached from the origin by means of a $d$-walk. We examine some geometric and algebraic properties of the terminal set. After observing that $({\mathcal{T}}_{d},+)$ is a normal subgroup of the group $(\mathbb{Z}^{N},+)$, we ask questions about the quotient group $\mathbb{Z}^{N}/{\mathcal{T}}_{d}$ and give the number of elements of $\mathbb{Z}^{2}/{\mathcal{T}}_{d}$ in terms of $d$. To establish this result, we use several consequences of Fermat’s theorem about representations of prime numbers of the form $4k+1$ as the sum of two squares. One of the consequences is the fact, observed by Sierpiński, that every natural power of such a prime number has exactly one relatively prime representation. We provide explicit formulas for the relatively prime integers in this representation.
We study the Hausdorff measure and dimension of the set of intrinsically simultaneously $\unicode[STIX]{x1D713}$-approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done in the case of curves.
The computation of integrals in higher dimensions and on general domains, when no explicit cubature rules are known, can be ”easily” addressed by means of the quasi-Monte Carlo method. The method, simple in its formulation, becomes computationally inefficient when the space dimension is growing and the integration domain is particularly complex. In this paper we present two new approaches to the quasi-Monte Carlo method for cubature based on nonnegative least squares and approximate Fekete points. The main idea is to use less points and especially good points for solving the system of the moments. Good points are here intended as points with good interpolation properties, due to the strict connection between interpolation and cubature. Numerical experiments show that, in average, just a tenth of the points should be used mantaining the same approximation order of the quasi-Monte Carlo method. The method has been satisfactory applied to 2 and 3-dimensional problems on quite complex domains.
The holomorphy conjecture roughly states that Igusa’s zeta function associated to a hypersurface and a character is holomorphic on $\mathbb{C}$ whenever the order of the character does not divide the order of any eigenvalue of the local monodromy of the hypersurface. In this article, we prove the holomorphy conjecture for surface singularities that are nondegenerate over $\mathbb{C}$ with respect to their Newton polyhedron. In order to provide relevant eigenvalues of monodromy, we first show a relation between the normalized volumes (which appear in the formula of Varchenko for the zeta function of monodromy) of the faces in a simplex in arbitrary dimension. We then study some specific character sums that show up when dealing with false poles. In contrast to the context of the trivial character, we here need to show fakeness of certain candidate poles other than those contributed by $B_{1}$-facets.
One can characterize Siegel cusp forms among Siegel modular forms by growth properties of their Fourier coefficients. We give a new proof, which works also for more general types of modular forms. Our main tool is to study the behavior of a modular form for $Z=X+iY$ when $Y\longrightarrow 0$.
In 1939, Erdös and Mahler [‘Some arithmetical properties of the convergents of a continued fraction’, J. Lond. Math. Soc. (2)14 (1939), 12–18] studied some arithmetical properties of the convergents of a continued fraction. In particular, they raised a conjecture related to continued fractions and Liouville numbers. In this paper, we shall apply the theory of linear forms in logarithms to obtain a result in the direction of this problem.
In this paper, we show that every pair of large positive even integers can be represented in the form of a pair of Goldbach–Linnik equations, that is, linear equations in two primes and $k$ powers of two. In particular, $k=34$ powers of two suffice, in general, and $k=18$ under the generalised Riemann hypothesis. Our result sharpens the number of powers of two in previous results, which gave $k=62$, in general, and $k=31$ under the generalised Riemann hypothesis.
Two results related to the mixed joint universality for a polynomial Euler product $\unicode[STIX]{x1D711}(s)$ and a periodic Hurwitz zeta function $\unicode[STIX]{x1D701}(s,\unicode[STIX]{x1D6FC};\mathfrak{B})$, when $\unicode[STIX]{x1D6FC}$ is a transcendental parameter, are given. One is the mixed joint functional independence and the other is a generalised universality, which includes several periodic Hurwitz zeta functions.
We construct a stable formal model of a Lubin–Tate curve with level three, and study the action of a Weil group and a division algebra on its stable reduction. Further, we study a structure of cohomology of the Lubin–Tate curve. Our study is purely local and includes the case where the characteristic of the residue field of a local field is two.
We study induced representations of the form $\unicode[STIX]{x1D6FF}_{1}\times \unicode[STIX]{x1D6FF}_{2}\rtimes \unicode[STIX]{x1D70E}$, where $\unicode[STIX]{x1D6FF}_{1},\unicode[STIX]{x1D6FF}_{2}$ are irreducible essentially square-integrable representations of general linear group and $\unicode[STIX]{x1D70E}$ is a strongly positive discrete series of classical $p$-adic group, which naturally appear in the nonunitary dual. For $\unicode[STIX]{x1D6FF}_{1}=\unicode[STIX]{x1D6FF}([\unicode[STIX]{x1D708}^{a}\unicode[STIX]{x1D70C}_{1},\unicode[STIX]{x1D708}^{b}\unicode[STIX]{x1D70C}_{1}])$ and $\unicode[STIX]{x1D6FF}_{2}=\unicode[STIX]{x1D6FF}([\unicode[STIX]{x1D708}^{c}\unicode[STIX]{x1D70C}_{2},\unicode[STIX]{x1D708}^{d}\unicode[STIX]{x1D70C}_{2}])$ with $a\geqslant 1$ and $c\geqslant 1$, we determine composition factors of such induced representation.
Let $A$ be a subset of $\mathbb{N}$, the set of all nonnegative integers. For an integer $h\geq 2$, let $hA$ be the set of all sums of $h$ elements of $A$. The set $A$ is called an asymptotic basis of order $h$ if $hA$ contains all sufficiently large integers. Otherwise, $A$ is called an asymptotic nonbasis of order $h$. An asymptotic nonbasis $A$ of order $h$ is called a maximal asymptotic nonbasis of order $h$ if $A\cup \{a\}$ is an asymptotic basis of order $h$ for every $a\notin A$. In this paper, we construct a sequence of asymptotic nonbases of order $h$ for each $h\geq 2$, each of which is not a subset of a maximal asymptotic nonbasis of order $h$.