To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we perform an extensive study of the spaces of automorphic forms for $\text{GL}_{2}$ of weight $2$ and level $\mathfrak{n}$, for $\mathfrak{n}$ an ideal in the ring of integers of the quartic CM field $\mathbb{Q}({\it\zeta}_{12})$ of twelfth roots of unity. This study is conducted through the computation of the Hecke module $H^{\ast }({\rm\Gamma}_{0}(\mathfrak{n}),\mathbb{C})$, and the corresponding Hecke action. Combining this Hecke data with the Faltings–Serre method for proving equivalence of Galois representations, we are able to provide the first known examples of modular elliptic curves over this field.
We prove a generalization of the author’s work to show that any subset of the primes which is ‘well distributed’ in arithmetic progressions contains many primes which are close together. Moreover, our bounds hold with some uniformity in the parameters. As applications, we show there are infinitely many intervals of length $(\log x)^{{\it\epsilon}}$ containing $\gg _{{\it\epsilon}}\log \log x$ primes, and show lower bounds of the correct order of magnitude for the number of strings of $m$ congruent primes with $p_{n+m}-p_{n}\leqslant {\it\epsilon}\log x$.
The pseudo-Frobenius numbers of a numerical semigroup are those gaps of the numerical semigroup that are maximal for the partial order induced by the semigroup. We present a procedure to detect if a given set of integers is the set of pseudo-Frobenius numbers of a numerical semigroup and, if so, to compute the set of all numerical semigroups having this set as set of pseudo-Frobenius numbers.
We show that every modular form on Γ0(2n) (n ⩾ 2) can be expressed as a sum of eta-quotients, which is a partial answer to Ono's problem. Furthermore, we construct a primitive generator of the ring class field of the order of conductor 4N (N ⩾ 1) in an imaginary quadratic field in terms of the special value of a certain eta-quotient.
We prove that a nonreal algebraic number $\unicode[STIX]{x1D703}$ with modulus greater than $1$ is a complex Pisot number if and only if there is a nonzero complex number $\unicode[STIX]{x1D706}$ such that the sequence of fractional parts $(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$ has a finite number of limit points. Also, we characterise those complex Pisot numbers $\unicode[STIX]{x1D703}$ for which there is a convergent sequence of the form $(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$ for some $\unicode[STIX]{x1D706}\in \mathbb{C}^{\ast }$. These results are generalisations of the corresponding real ones, due to Pisot, Vijayaraghavan and Dubickas.
In this short note, we give a proof, conditional on the generalised Riemann hypothesis, that there exist numbers $x$ which are normal with respect to the continued fraction expansion but not to any base-$b$ expansion. This partially answers a question of Bugeaud.
Let $P\in \mathbb{F}_{2}[z]$ be such that $P(0)=1$ and degree $(P)\geq 1$. Nicolas et al. [‘On the parity of additive representation functions’, J. Number Theory73 (1998), 292–317] proved that there exists a unique subset ${\mathcal{A}}={\mathcal{A}}(P)$ of $\mathbb{N}$ such that $\sum _{n\geq 0}p({\mathcal{A}},n)z^{n}\equiv P(z)~\text{mod}\,2$, where $p({\mathcal{A}},n)$ is the number of partitions of $n$ with parts in ${\mathcal{A}}$. Let $m$ be an odd positive integer and let ${\it\chi}({\mathcal{A}},.)$ be the characteristic function of the set ${\mathcal{A}}$. Finding the elements of the set ${\mathcal{A}}$ of the form $2^{k}m$, $k\geq 0$, is closely related to the $2$-adic integer $S({\mathcal{A}},m)={\it\chi}({\mathcal{A}},m)+2{\it\chi}({\mathcal{A}},2m)+4{\it\chi}({\mathcal{A}},4m)+\cdots =\sum _{k=0}^{\infty }2^{k}{\it\chi}({\mathcal{A}},2^{k}m)$, which has been shown to be an algebraic number. Let $G_{m}$ be the minimal polynomial of $S({\mathcal{A}},m)$. In precedent works there were treated the case $P$ irreducible of odd prime order $p$. In this setting, taking $p=1+ef$, where $f$ is the order of $2$ modulo $p$, explicit determinations of the coefficients of $G_{m}$ have been made for $e=2$ and 3. In this paper, we treat the case $e=4$ and use the cyclotomic numbers to make explicit $G_{m}$.
A conjectural generalization of the McKay correspondence in terms of stringy invariants to arbitrary characteristics, including the wild case, was recently formulated by the author in the case where the given finite group acts linearly on an affine space. In cases of very special groups and representations, the conjecture has been verified and related stringy invariants have been explicitly computed. In this paper, we try to generalize the conjecture and computations to more complicated situations such as nonlinear actions on possibly singular spaces and nonpermutation representations of nonabelian groups.
We investigate exponential sums over those numbers ${\leqslant}x$ all of whose prime factors are ${\leqslant}y$. We prove fairly good minor arc estimates, valid whenever $\log ^{3}x\leqslant y\leqslant x^{1/3}$. Then we prove sharp upper bounds for the $p$th moment of (possibly weighted) sums, for any real $p>2$ and $\log ^{C(p)}x\leqslant y\leqslant x$. Our proof develops an argument of Bourgain, showing that this can succeed without strong major arc information, and roughly speaking it would give sharp moment bounds and restriction estimates for any set sufficiently factorable relative to its density. By combining our bounds with major arc estimates of Drappeau, we obtain an asymptotic for the number of solutions of $a+b=c$ in $y$-smooth integers less than $x$ whenever $\log ^{C}x\leqslant y\leqslant x$. Previously this was only known assuming the generalised Riemann hypothesis. Combining them with transference machinery of Green, we prove Roth’s theorem for subsets of the $y$-smooth numbers whenever $\log ^{C}x\leqslant y\leqslant x$. This provides a deterministic set, of size ${\approx}x^{1-c}$, inside which Roth’s theorem holds.
where $c>0$ is some absolute constant. In view of Behrend’s construction, this bound is of the right shape: the exponent $1/7$ cannot be replaced by any constant larger than $1/2$. We also establish a related result, which says that sumsets $A+A+A$ contain long arithmetic progressions if $A\subset \{1,\ldots ,N\}$, or high-dimensional affine subspaces if $A\subset \mathbb{F}_{q}^{n}$, even if $A$ has density of the shape above.
We introduce a common generalization of essentially all known methods for explicit computation of Selmer groups, which are used to bound the ranks of abelian varieties over global fields. We also simplify and extend the proofs relating what is computed to the cohomologically defined Selmer groups. Selmer group computations have been practical for many Jacobians of curves over $\mathbb{Q}$ of genus up to 2 since the 1990s, but our approach is the first to be practical for general curves of genus 3. We show that our approach succeeds on some genus 3 examples defined by polynomials with small coefficients.
We revisit Berkovich and Garvan’s two bijections: the first gives symmetry of cranks and the second relates partitions with crank $\leq k$ to those with $k$ in the rank-set of partitions. Using these, we give a combinatorial proof for the relationship between the first positive crank moment and the sum of sizes of Durfee squares. We also study refinements of the first and second positive crank moments.
We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$-adic hypergeometric function for any odd prime $d$.
We extend the $p$-adic Gross–Zagier formula of Bertolini et al. [Generalized Heegner cycles and $p$-adic Rankin $L$-series, Duke Math. J.162(6) (2013), 1033–1148] to the semistable non-crystalline setting, and combine it with our previous work [Castella, On the $p$-adic variation of Heegner points, Preprint, 2014, arXiv:1410.6591] to obtain a derivative formula for the specializations of Howard’s big Heegner points [Howard, Variation of Heegner points in Hida families, Invent. Math.167(1) (2007), 91–128] at exceptional primes in the Hida family.
Let $E$ be an elliptic curve without complex multiplication (CM) over a number field $K$, and let $G_{E}(\ell )$ be the image of the Galois representation induced by the action of the absolute Galois group of $K$ on the $\ell$-torsion subgroup of $E$. We present two probabilistic algorithms to simultaneously determine $G_{E}(\ell )$ up to local conjugacy for all primes $\ell$ by sampling images of Frobenius elements; one is of Las Vegas type and the other is a Monte Carlo algorithm. They determine $G_{E}(\ell )$ up to one of at most two isomorphic conjugacy classes of subgroups of $\mathbf{GL}_{2}(\mathbf{Z}/\ell \mathbf{Z})$ that have the same semisimplification, each of which occurs for an elliptic curve isogenous to $E$. Under the GRH, their running times are polynomial in the bit-size $n$ of an integral Weierstrass equation for $E$, and for our Monte Carlo algorithm, quasilinear in $n$. We have applied our algorithms to the non-CM elliptic curves in Cremona’s tables and the Stein–Watkins database, some 140 million curves of conductor up to $10^{10}$, thereby obtaining a conjecturally complete list of 63 exceptional Galois images $G_{E}(\ell )$ that arise for $E/\mathbf{Q}$ without CM. Under this conjecture, we determine a complete list of 160 exceptional Galois images $G_{E}(\ell )$ that arise for non-CM elliptic curves over quadratic fields with rational $j$-invariants. We also give examples of exceptional Galois images that arise for non-CM elliptic curves over quadratic fields only when the $j$-invariant is irrational.
In this paper we study the Oort conjecture concerning the non-existence of Shimura subvarieties contained generically in the Torelli locus in the Siegel modular variety ${\mathcal{A}}_{g}$. Using the poly-stability of Higgs bundles on curves and the slope inequality of Xiao on fibered surfaces, we show that a Shimura curve $C$ is not contained generically in the Torelli locus if its canonical Higgs bundle contains a unitary Higgs subbundle of rank at least $(4g+2)/5$. From this we prove that a Shimura subvariety of $\mathbf{SU}(n,1)$ type is not contained generically in the Torelli locus when a numerical inequality holds, which involves the genus $g$, the dimension $n+1$, the degree $2d$ of CM field of the Hermitian space, and the type of the symplectic representation defining the Shimura subdatum. A similar result holds for Shimura subvarieties of $\mathbf{SO}(n,2)$ type, defined by spin groups associated to quadratic spaces over a totally real number field of degree at least $6$ subject to some natural constraints of signatures.
In this paper, we study real-dihedral harmonic Maass forms and their Fourier coefficients. The main result expresses the values of Hilbert modular forms at twisted CM 0-cycles in terms of these Fourier coefficients. This is a twisted version of the main theorem in Bruinier and Yang [CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229–288] and provides evidence that the individual Fourier coefficients are logarithms of algebraic numbers in the appropriate real-quadratic field. From this result and numerical calculations, we formulate an algebraicity conjecture, which is an analogue of Stark’s conjecture in the setting of harmonic Maass forms. Also, we give a conjectural description of the primes appearing in CM-values of Hilbert modular functions.
This article considers the positive integers $N$ for which ${\it\zeta}_{N}(s)=\sum _{n=1}^{N}n^{-s}$ has zeroes in the half-plane $\Re (s)>1$. Building on earlier results, we show that there are no zeroes for $1\leqslant N\leqslant 18$ and for $N=20,21,28$. For all other $N$ there are infinitely many such zeroes.