To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $F$ be a totally real number field, ${\wp}$ a place of $F$ above $p$. Let ${\it\rho}$ be a $2$-dimensional $p$-adic representation of $\text{Gal}(\overline{F}/F)$ which appears in the étale cohomology of quaternion Shimura curves (thus ${\it\rho}$ is associated to Hilbert eigenforms). When the restriction ${\it\rho}_{{\wp}}:={\it\rho}|_{D_{{\wp}}}$ at the decomposition group of ${\wp}$ is semistable noncrystalline, one can associate to ${\it\rho}_{{\wp}}$ the so-called Fontaine–Mazur ${\mathcal{L}}$-invariants, which are however invisible in the classical local Langlands correspondence. In this paper, we prove one can find these ${\mathcal{L}}$-invariants in the completed cohomology group of quaternion Shimura curves, which generalizes some of Breuil’s results [Breuil, Astérisque, 331 (2010), 65–115] in the $\text{GL}_{2}/\mathbb{Q}$-case.
We present a ready to compute trace formula for Hecke operators on vector-valuedmodular forms of integral weight for SL2(ℤ) transforming under the Weil representation. As a corollary, we obtain a ready to compute dimension formula for the corresponding space of vector-valued cusp forms, which is more general than the dimension formulae previously published in the vector-valued setting.
We prove a general result on Bailey pairs and show that two Bailey pairs of Bringmann and Kane are special cases. We also show how to use a change of base formula to pass from the pairs of Bringmann and Kane to pairs used by Andrews in his study of Ramanujan's seventh order mock theta functions. We derive several more Bailey pairs of a similar type and use these to construct a number of new q-hypergeometric double sums which are mock theta functions. Finally, we prove identities between some of these mock theta double sums and classical mock theta functions.
We give an explicit description of the stable reduction of superelliptic curves of the form yn=f(x) at primes $\mathfrak{p}$ whose residue characteristic is prime to the exponent n. We then use this description to compute the local L-factor and the exponent of conductor at $\mathfrak{p}$ of the curve.
We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$-modules, where $F$ is a $p$-adic field and $k$ is an algebraically closed field of characteristic $\ell$ different from $p$. We describe a factorization of this category into blocks, and show that the center of each such block is a reduced, $\ell$-torsion free, finite type $W(k)$-algebra. Moreover, the $k$-points of the center of a such a block are in bijection with the possible ‘supercuspidal supports’ of the smooth $k[\text{GL}_{n}(F)]$-modules that lie in the block. Finally, we describe a large explicit subalgebra of the center of each block and give a description of the action of this algebra on the simple objects of the block, in terms of the description of the classical ‘characteristic zero’ Bernstein center of Bernstein and Deligne [Le ‘centre’ de Bernstein, in Representations des groups redutifs sur un corps local, Traveaux en cours (ed. P. Deligne) (Hermann, Paris), 1–32].
The aim of this paper is to carry out an explicit construction of CAP representations of $\text{GL}(2)$ over a division quaternion algebra with discriminant two. We first construct cusp forms on such a group explicitly by lifting from Maass cusp forms for the congruence subgroup ${\rm\Gamma}_{0}(2)$. We show that this lifting is nonzero and Hecke-equivariant. This allows us to determine each local component of a cuspidal representation generated by such a lifting. We then show that our cuspidal representations provide examples of CAP (cuspidal representation associated to a parabolic subgroup) representations, and, in fact, counterexamples to the Ramanujan conjecture.
We prove a level raising mod $\ell =2$ theorem for elliptic curves over $\mathbb{Q}$. It generalizes theorems of Ribet and Diamond–Taylor and also explains different sign phenomena compared to odd $\ell$. We use it to study the 2-Selmer groups of modular abelian varieties with common mod 2 Galois representation. As an application, we show that the 2-Selmer rank can be arbitrary in level raising families.
We propose an algorithm to verify the $p$-part of the class number for a number field $K$, provided $K$ is totally real and an abelian extension of the rational field $\mathbb{Q}$, and $p$ is any prime. On fields of degree 4 or higher, this algorithm has been shown heuristically to be faster than classical algorithms that compute the entire class number, with improvement increasing with larger field degrees.
We compute the image of any choice of complex conjugation on the Galois representations associated to regular algebraic cuspidal automorphic representations and to torsion classes in the cohomology of locally symmetric spaces for $\text{GL}_{n}$ over a totally real field $F$.
Let $K$ be a finite extension of $\mathbb{Q}_{p}$ and let $\bar{\unicode[STIX]{x1D70C}}$ be a continuous, absolutely irreducible representation of its absolute Galois group with values in a finite field of characteristic $p$. We prove that the Galois representations that become crystalline of a fixed regular weight after an abelian extension are Zariski-dense in the generic fiber of the universal deformation ring of $\bar{\unicode[STIX]{x1D70C}}$. In fact we deduce this from a similar density result for the space of trianguline representations. This uses an embedding of eigenvarieties for unitary groups into the spaces of trianguline representations as well as the corresponding density claim for eigenvarieties as a global input.
We improve recent results of Bourgain and Shparlinski to show that, for almost all primes $p$, there is a multiple $mp$ that can be written in binary as
with $k=6$ (corresponding to Hamming weight seven). We also prove that there are infinitely many primes $p$ with a multiplicative subgroup $A=\langle g\rangle \subset \mathbb{F}_{p}^{\ast }$, for some $g\in \{2,3,5\}$, of size $|A|\gg p/(\log p)^{3}$, where the sum–product set $A\cdot A+A\cdot A$ does not cover $\mathbb{F}_{p}$ completely.
We investigate two kinds of Fricke families, those consisting of Fricke functions and those consisting of Siegel functions. In terms of their special values we then generate ray class fields of imaginary quadratic fields over the Hilbert class fields, which are related to the Lang–Schertz conjecture.
We prove a direct image theorem stating that the direct image of a Galois formula by a morphism of difference schemes is equivalent to a Galois formula over fields with powers of Frobenius. As a consequence, we obtain an effective quantifier elimination procedure and a precise algebraic–geometric description of definable sets over fields with Frobenii in terms of twisted Galois formulas associated with finite Galois covers of difference schemes.
In this paper, we shall prove that any subset of $\overline{\mathbb{Q}}$, which is closed under complex conjugation, is the exceptional set of uncountably many transcendental entire functions with rational coefficients. This solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer, Berlin, 1976)].
Consider a translation-invariant system of linear equations Vx = 0 of complexity one, where V is an integer r × t matrix. We show that if A is a subset of the primes up to N of density at least C(log logN)–1/25t, there exists a solution x ∈ At to Vx = 0 with distinct coordinates. This extends a quantitative result of Helfgott and de Roton for three-term arithmetic progressions, while the qualitative result is known to hold for all translation-invariant systems of finite complexity by the work of Green and Tao.
Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.
We consider the distribution of the polygonal paths joining partial sums of classical Kloosterman sums $\text{Kl}_{p}(a)$, as $a$ varies over $\mathbf{F}_{p}^{\times }$ and as $p$ tends to infinity. Using independence of Kloosterman sheaves, we prove convergence in the sense of finite distributions to a specific random Fourier series. We also consider Birch sums, for which we can establish convergence in law in the space of continuous functions. We then derive some applications.
For $n=3$, $4$, and 5, we prove that, when $S_{n}$-number fields of degree $n$ are ordered by their absolute discriminants, the lattice shapes of the rings of integers in these fields become equidistributed in the space of lattices.