To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A family of arbitrarily high-order energy-preserving methods are developed to solve the coupled Schrödinger–Boussinesq (S-B) system. The system is a nonlinear coupled system and satisfies a series of conservation laws. It is often difficult to construct a high-order decoupling numerical algorithm to solve the nonlinear system. In this paper, the original system is first reformulated into an equivalent Hamiltonian system by introducing multiple auxiliary variables. Next, the reformulated system is discretized by the Fourier pseudo-spectral method and the implicit midpoint scheme in the spatial and temporal directions, respectively, and a second-order conservative scheme is obtained. Finally, the scheme is extended to arbitrarily high-order accuracy by means of diagonally implicit symplectic Runge–Kutta methods or composition methods. Rigorous analyses show that the proposed methods are fully decoupled and can precisely conserve the discrete invariants. Numerical results show that the proposed schemes are effective and can be easily extended to other nonlinear partial differential equations.
Time parallelization, also known as PinT (parallel-in-time), is a new research direction for the development of algorithms used for solving very large-scale evolution problems on highly parallel computing architectures. Despite the fact that interesting theoretical work on PinT appeared as early as 1964, it was not until 2004, when processor clock speeds reached their physical limit, that research in PinT took off. A distinctive characteristic of parallelization in time is that information flow only goes forward in time, meaning that time evolution processes seem necessarily to be sequential. Nevertheless, many algorithms have been developed for PinT computations over the past two decades, and they are often grouped into four basic classes according to how the techniques work and are used: shooting-type methods; waveform relaxation methods based on domain decomposition; multigrid methods in space–time; and direct time parallel methods. However, over the past few years, it has been recognized that highly successful PinT algorithms for parabolic problems struggle when applied to hyperbolic problems. We will therefore focus on this important aspect, first by providing a summary of the fundamental differences between parabolic and hyperbolic problems for time parallelization. We then group PinT algorithms into two basic groups. The first group contains four effective PinT techniques for hyperbolic problems: Schwarz waveform relaxation (SWR) with its relation to tent pitching; parallel integral deferred correction; ParaExp; and ParaDiag. While the methods in the first group also work well for parabolic problems, we then present PinT methods specifically designed for parabolic problems in the second group: Parareal; the parallel full approximation scheme in space–time (PFASST); multigrid reduction in time (MGRiT); and space–time multigrid (STMG). We complement our analysis with numerical illustrations using four time-dependent PDEs: the heat equation; the advection–diffusion equation; Burgers’ equation; and the second-order wave equation.
We study the planar FitzHugh–Nagumo system with an attracting periodic orbit that surrounds a repelling focus equilibrium. When the associated oscillation of the system is perturbed, in a given direction and with a given amplitude, there will generally be a change in phase of the perturbed oscillation with respect to the unperturbed one. This is recorded by the phase transition curve (PTC), which relates the old phase (along the periodic orbit) to the new phase (after perturbation). We take a geometric point of view and consider the phase-resetting surface comprising all PTCs as a function of the perturbation amplitude. This surface has a singularity when the perturbation maps a point on the periodic orbit exactly onto the repelling focus, which is the only point that does not return to stable oscillation. We also consider the PTC as a function of the direction of the perturbation and present how the corresponding phase-resetting surface changes with increasing perturbation amplitude. In this way, we provide a complete geometric interpretation of how the PTC changes for any perturbation direction. Unlike other examples discussed in the literature so far, the FitzHugh–Nagumo system is a generic example and, hence, representative for planar vector fields.
We are concerned with the micro-macro Parareal algorithm for the simulation of initial-value problems. In this algorithm, a coarse (fast) solver is applied sequentially over the time domain and a fine (time-consuming) solver is applied as a corrector in parallel over smaller chunks of the time interval. Moreover, the coarse solver acts on a reduced state variable, which is coupled with the fine state variable through appropriate coupling operators. We first provide a contribution to the convergence analysis of the micro-macro Parareal method for multiscale linear ordinary differential equations. Then, we extend a variant of the micro-macro Parareal algorithm for scalar stochastic differential equations (SDEs) to higher-dimensional SDEs.
This overview is devoted to splitting methods, a class of numerical integrators intended for differential equations that can be subdivided into different problems easier to solve than the original system. Closely connected with this class of integrators are composition methods, in which one or several low-order schemes are composed to construct higher-order numerical approximations to the exact solution. We analyse in detail the order conditions that have to be satisfied by these classes of methods to achieve a given order, and provide some insight about their qualitative properties in connection with geometric numerical integration and the treatment of highly oscillatory problems. Since splitting methods have received considerable attention in the realm of partial differential equations, we also cover this subject in the present survey, with special attention to parabolic equations and their problems. An exhaustive list of methods of different orders is collected and tested on simple examples. Finally, some applications of splitting methods in different areas, ranging from celestial mechanics to statistics, are also provided.
Aromatic B-series were introduced as an extension of standard Butcher-series for the study of volume-preserving integrators. It was proven with their help that the only volume-preserving B-series method is the exact flow of the differential equation. The question was raised whether there exists a volume-preserving integrator that can be expanded as an aromatic B-series. In this work, we introduce a new algebraic tool, called the aromatic bicomplex, similar to the variational bicomplex in variational calculus. We prove the exactness of this bicomplex and use it to describe explicitly the key object in the study of volume-preserving integrators: the aromatic forms of vanishing divergence. The analysis provides us with a handful of new tools to study aromatic B-series, gives insights on the process of integration by parts of trees, and allows to describe explicitly the aromatic B-series of a volume-preserving integrator. In particular, we conclude that an aromatic Runge–Kutta method cannot preserve volume.
We discuss the modelling framework of port-Hamiltonian descriptor systems and their use in numerical simulation and control. The structure is ideal for automated network-based modelling since it is invariant under power-conserving interconnection, congruence transformations and Galerkin projection. Moreover, stability and passivity properties are easily shown. Condensed forms under orthogonal transformations present easy analysis tools for existence, uniqueness, regularity and numerical methods to check these properties.
After recalling the concepts for general linear and nonlinear descriptor systems, we demonstrate that many difficulties that arise in general descriptor systems can be easily overcome within the port-Hamiltonian framework. The properties of port-Hamiltonian descriptor systems are analysed, and time discretization and numerical linear algebra techniques are discussed. Structure-preserving regularization procedures for descriptor systems are presented to make them suitable for simulation and control. Model reduction techniques that preserve the structure and stabilization and optimal control techniques are discussed.
The properties of port-Hamiltonian descriptor systems and their use in modelling simulation and control methods are illustrated with several examples from different physical domains. The survey concludes with open problems and research topics that deserve further attention.
Recent higher-order explicit Runge–Kutta methods are compared with the classic fourth-order (RK4) method in long-term integration of both energy-conserving and lossy systems. By comparing quantity of function evaluations against accuracy for systems with and without known solutions, optimal methods are proposed. For a conservative system, we consider positional accuracy for Newtonian systems of two or three bodies and total angular momentum for a simplified Solar System model, over moderate astronomical timescales (tens of millions of years). For a nonconservative system, we investigate a relativistic two-body problem with gravitational wave emission. We find that methods of tenth and twelfth order consistently outperform lower-order methods for the systems considered here.
When faced with the task of solving hyperbolic partial differential equations (PDEs), high order, strong stability-preserving (SSP) time integration methods are often needed to ensure preservation of the nonlinear strong stability properties of spatial discretizations. Among such methods, SSP second derivative time-stepping schemes have been recently introduced and used for evolving hyperbolic PDEs. In previous works, coupling of forward Euler and a second derivative formulation led to sufficient conditions for a second derivative general linear method (SGLM), which preserve the strong stability properties of spatial discretizations. However, for such methods, the types of spatial discretizations that can be used are limited. In this paper, we use a formulation based on forward Euler and Taylor series conditions to extend the SSP SGLM framework. We investigate the construction of SSP second derivative diagonally implicit multistage integration methods (SDIMSIMs) as a subclass of SGLMs with order $p=r=s$ and stage order $q=p,p-1$ up to order eight, where r is the number of external stages and s is the number of internal stages of the method. Proposed methods are examined on some one-dimensional linear and nonlinear systems to verify their theoretical order, and show potential of these schemes in preserving some nonlinear stability properties such as positivity and total variation.
The paper deals with the construction of explicit Nordsieck second derivative general linear methods with s stages of order p with $p=s$ and high stage order $q=p$ with inherent Runge–Kutta or quadratic stability properties. Satisfying the order and stage order conditions together with inherent stability conditions leads to methods with some free parameters, which will be used to obtain methods with a large region of absolute stability. Examples of methods with r external stages and $p=q=s=r-1$ up to order five are given, and numerical experiments in a fixed stepsize environment are presented.
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
For Laplacians defined by measures on a bounded domain in ℝn, we prove analogues of the classical eigenvalue estimates for the standard Laplacian: lower bound of sums of eigenvalues by Li and Yau, and gaps of consecutive eigenvalues by Payne, Pólya and Weinberger. This work is motivated by the study of spectral gaps for Laplacians on fractals.
We propose a numerical method for the simulation of a quasi-linear parabolic biofilm model that exhibits three non-linear diffusion effects: (i) a power law degeneracy, (ii) a super diffusion singularity and (iii) non-linear cross-diffusion. The method is based on a spatial Finite Volume discretisation in which cross-diffusion terms are formally treated as convection terms. Time-integration of the resulting semi-discretised system is carried out using an error-controlled, time-adaptive, embedded Rosenbrock–Wanner method. We compare several variants of the method and two variants of the model to investigate how details such as the choice cross-diffusion coefficients, and specific variants of the time integrator affect simulation time.
A new Semi-Lagrangian scheme is proposed to discretize the surface convection-diffusion equation. The other involved equations including the the level-set convection equation, the re-initialization equation and the extension equation are also solved by S-L schemes. The S-L method removes both the CFL condition and the stiffness caused by the surface Laplacian, allowing larger time step than the Eulerian method. The method is extended to the block-structured adaptive mesh. Numerical examples are given to demonstrate the efficiency of the S-L method.
In this work, we examine the mathematical analysis and numerical simulation of pattern formation in a subdiffusive multicomponents fractional-reaction-diffusion system that models the spatial interrelationship between two preys and predator species. The major result is centered on the analysis of the system for linear stability. Analysis of the main model reflects that the dynamical system is locally and globally asymptotically stable. We propose some useful theorems based on the existence and permanence of the species to validate our theoretical findings. Reliable and efficient methods in space and time are formulated to handle any space fractional reaction-diffusion system. We numerically present the complexity of the dynamics that are theoretically discussed. The simulation results in one, two and three dimensions show some amazing scenarios.
We analyse the performance of a recursive Monte Carlo method for the Bayesian estimation of the static parameters of a discrete-time state-space Markov model. The algorithm employs two layers of particle filters to approximate the posterior probability distribution of the model parameters. In particular, the first layer yields an empirical distribution of samples on the parameter space, while the filters in the second layer are auxiliary devices to approximate the (analytically intractable) likelihood of the parameters. This approach relates the novel algorithm to the recent sequential Monte Carlo square method, which provides a nonrecursive solution to the same problem. In this paper we investigate the approximation of integrals of real bounded functions with respect to the posterior distribution of the system parameters. Under assumptions related to the compactness of the parameter support and the stability and continuity of the sequence of posterior distributions for the state-space model, we prove that the Lp norms of the approximation errors vanish asymptotically (as the number of Monte Carlo samples generated by the algorithm increases) and uniformly over time. We also prove that, under the same assumptions, the proposed scheme can asymptotically identify the parameter values for a class of models. We conclude the paper with a numerical example that illustrates the uniform convergence results by exploring the accuracy and stability of the proposed algorithm operating with long sequences of observations.
We consider the second order nonlinear ordinary differential equation u″ (t) = u1+α (α > 0) with positive initial data u(0) = a0, u′(0) = a1, whose solution becomes unbounded in a finite time T. The finite time T is called the blow-up time. Since finite difference schemes with uniform meshes can not reproduce such a phenomenon well, adaptively-defined grids are applied. Convergence with mesh sizes of certain smallness has been considered before. However, more iterations are required to obtain an approximate blow-up time if smaller meshes are applied. As a consequence, we consider in this paper a finite difference scheme with a rather larger grid size and show the convergence of the numerical solution and the numerical blow-up time. Application to the nonlinear wave equation is also discussed.
Some convergence bounds of the minimal residual (MINRES) method are studied when the method is applied for solving Hermitian indefinite linear systems. The matrices of these linear systems are supposed to have some properties so that their spectra are all clustered around ±1. New convergence bounds depending on the spectrum of the coefficient matrix are presented. Some numerical experiments are shown to demonstrate our theoretical results.
In this paper, we consider a two-point boundary value problem with Caputo fractional derivative, where the second order derivative of the exact solution is unbounded. Based on the equivalent form of the main equation, a finite difference scheme is derived. The L∞ convergence of the difference system is discussed rigorously. The convergence rate in general improves previous results. Numerical examples are provided to demonstrate the theoretical results.