We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.
We find an explicit expression for the zeta-regularized determinant of (the Friedrichs extensions of) the Laplacians on a compact Riemann surface of genus one with conformal metric of curvature $1$ having a single conical singularity of angle $4\unicode[STIX]{x1D70B}$.
We show that positive absolutely norm attaining operators can be characterised by a simple property of their spectra. This result clarifies and simplifies a result of Ramesh. As an application we characterise weighted shift operators which are absolutely norm attaining.
We consider a linear operator pencil with complex parameter mapping one Hilbert space onto another. It is known that the resolvent is analytic in an open annular region of the complex plane centred at the origin if and only if the coefficients of the Laurent series satisfy a doubly-infinite set of left and right fundamental equations and are suitably bounded. If the resolvent has an isolated singularity at the origin we propose a recursive orthogonal decomposition of the domain and range spaces that enables us to construct the key nonorthogonal projections that separate the singular and regular components of the resolvent and subsequently allows us to find a formula for the basic solution to the fundamental equations. We show that each Laurent series coefficient in the singular part of the resolvent can be approximated by a weakly convergent sequence of finite-dimensional matrix operators and we show how our analysis can be extended to find a global expression for the resolvent of a linear pencil in the case where the resolvent has only a finite number of isolated singularities.
We obtain the representation of the backward shift operator on Chebyshev polynomials involving a principal value (PV) integral. Twice the backward shift on the space of square-summable sequences l2 displays chaotic dynamics, thus we provide an explicit form of a chaotic operator on L2 (−1, 1, (1−x2)–1/2) using Cauchy’s PV integral. We explicitly calculate the periodic points of the operator and provide examples of unbounded trajectories, as well as chaotic ones. Histograms and recurrence plots of shifts of random Chebyshev expansions display interesting behaviour over fractal measures.
This paper deals with a non-self-adjoint differential operator which is associated with a diffusion process with random jumps from the boundary. Our main result is that the algebraic multiplicity of an eigenvalue is equal to its order as a zero of the characteristic function $\unicode[STIX]{x1D6E5}(\unicode[STIX]{x1D706})$. This is a new criterion for determining the multiplicities of eigenvalues for concrete operators.
In the present paper, an inverse result of approximation, i.e. a saturation theorem for the sampling Kantorovich operators, is derived in the case of uniform approximation for uniformly continuous and bounded functions on the whole real line. In particular, we prove that the best possible order of approximation that can be achieved by the above sampling series is the order one, otherwise the function being approximated turns out to be a constant. The above result is proved by exploiting a suitable representation formula which relates the sampling Kantorovich series with the well-known generalized sampling operators introduced by Butzer. At the end, some other applications of such representation formulas are presented, together with a discussion concerning the kernels of the above operators for which such an inverse result occurs.
In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$-Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$-well-posedness for the third order differential equations $au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$, ($t\in \mathbb{R}$), where $A,B$ are closed linear operators on a Banach space $X$ such that $D(A)\subset D(B)$, $a\in \mathbb{C}$ and $0<\unicode[STIX]{x1D6FC}<1$.
Harte (1982, Math. Z.179, 431–436) initiated the study of Fredholm theory relative to a unital homomorphism T: A → B between unital Banach algebras A and B based on the following notions: an element a ∈ A is called Fredholm if 0 is not in the spectrum of Ta, while a is Weyl (Browder) if there exist (commuting) elements b and c in A with a = b + c such that 0 is not in the spectrum of b and c is in the null space of T. We introduce and investigate the concepts of r-Fredholm, r-Weyl and r-Browder elements, where 0 in these definitions is replaced by the spectral radii of a and b, respectively.
Several Lebesgue-type decomposition theorems in analysis have a strong relation to the operation called the parallel sum. The aim of this paper is to investigate this relation from a new point of view. Namely, using a natural generalization of Arlinskii's approach (which identifies the singular part as a fixed point of a single-variable map) we prove the existence of a Lebesgue-type decomposition for non-negative sesquilinear forms. As applications, we also show how this approach can be used to derive analogous results for representable functionals, non-negative finitely additive measures, and positive definite operator functions. The focus is on the fact that each theorem can be proved with the same completely elementary method.
We present some properties of orthogonality and relate them with support disjoint and norm inequalities in $p$-Schatten ideals. In addition, we investigate the problem of characterization of norm-parallelism for bounded linear operators. We consider the characterization of the norm-parallelism problem in $p$-Schatten ideals and locally uniformly convex spaces. Later on, we study the case when an operator is norm-parallel to the identity operator. Finally, we give some equivalence assertions about the norm-parallelism of compact operators. Some applications and generalizations are discussed for certain operators.
Let $G$ be an infinite graph on countably many vertices and let $\unicode[STIX]{x1D6EC}$ be a closed, infinite set of real numbers. We establish
the existence of an unbounded self-adjoint operator whose graph is $G$ and whose spectrum is $\unicode[STIX]{x1D6EC}$.
In this paper we define B-Fredholm elements in a Banach algebra A modulo an ideal J of A. When a trace function is given on the ideal J, it generates an index for B-Fredholm elements. In the case of a B-Fredholm operator T acting on a Banach space, we prove that its usual index ind(T) is equal to the trace of the commutator [T, T0], where T0 is a Drazin inverse of T modulo the ideal of finite rank operators, extending Fedosov's trace formula for Fredholm operators (see Böttcher and Silbermann [Analysis of Toeplitz operators, 2nd edn (Springer, 2006)]. In the case of a primitive Banach algebra, we prove a punctured neighbourhood theorem for the index.
We obtain intertwining dilation theorems for non-commutative regular domains 𝒟f and non-commutative varieties 𝒱J in B(𝓗)n, which generalize Sarason and Szőkefalvi-Nagy and Foiaş's commutant lifting theorem for commuting contractions. We present several applications including a new proof for the commutant lifting theorem for pure elements in the domain 𝒟f (respectively, variety 𝒱J ) as well as a Schur-type representation for the unit ball of the Hardy algebra associated with the variety 𝒱J. We provide Andô-type dilations and inequalities for bi-domains 𝒟f ×c 𝒟g consisting of all pairs (X,Y ) of tuples X := (X1,…, Xn1) ∊ 𝒟f and Y := (Y1,…, Yn2) ∊ 𝒟g that commute, i.e. each entry of X commutes with each entry of Y . The results are new, even when n1 = n2 = 1. In this particular case, we obtain extensions of Andô's results and Agler and McCarthy's inequality for commuting contractions to larger classes of commuting operators. All the results are extended to bi-varieties 𝒱J1×c 𝒱J2, where 𝒱J1 and 𝒱J2 are non-commutative varieties generated by weak-operator-topology-closed two-sided ideals in non-commutative Hardy algebras. The commutative case and the matrix case when n1 = n2 = 1 are also discussed.
It is not known whether the inverse of a frequently hypercyclic bilateral weighted shift on c0(ℤ) is again frequently hypercyclic. We show that the corresponding problem for upper frequent hypercyclicity has a positive answer. We characterise, more generally, when bilateral weighted shifts on Banach sequence spaces are (upper) frequently hypercyclic.
Let ${\mathcal{H}}=\mathbb{C}^{n}\otimes {\mathcal{E}}$ be the tensor product of a Euclidean space $\mathbb{C}^{n}$ and a separable Hilbert space ${\mathcal{E}}$. Our main object is the operator $G=I_{n}\otimes S+A\otimes I_{{\mathcal{E}}}$, where $S$ is a normal operator in ${\mathcal{E}}$, $A$ is an $n\times n$ matrix, and $I_{n},I_{{\mathcal{E}}}$ are the unit operators in $\mathbb{C}^{n}$ and ${\mathcal{E}}$, respectively. Numerous differential operators with constant matrix coefficients are examples of operator $G$. In the present paper we show that $G$ is similar to an operator $M=I_{n}\otimes S+\hat{D}\times I_{{\mathcal{E}}}$ where $\hat{D}$ is a block matrix, each block of which has a unique eigenvalue. We also obtain a bound for the condition number. That bound enables us to establish norm estimates for functions of $G$, nonregular on the closed convex hull $\operatorname{co}(G)$ of the spectrum of $G$. The functions $G^{-\unicode[STIX]{x1D6FC}}\;(\unicode[STIX]{x1D6FC}>0)$ and $(\ln G)^{-1}$ are examples of such functions. In addition, in the appropriate situations we improve the previously published estimates for the resolvent and functions of $G$ regular on $\operatorname{co}(G)$. Since differential operators with variable coefficients often can be considered as perturbations of operators with constant coefficients, the results mentioned above give us estimates for functions and bounds for the spectra of differential operators with variable coefficients.
We study the convex feasibility problem in $\text{CAT}(\unicode[STIX]{x1D705})$ spaces using Mann’s iterative projection method. To do this, we extend Mann’s projection method in normed spaces to $\text{CAT}(\unicode[STIX]{x1D705})$ spaces with $\unicode[STIX]{x1D705}\geq 0$, and then we prove the $\unicode[STIX]{x1D6E5}$-convergence of the method. Furthermore, under certain regularity or compactness conditions on the convex closed sets, we prove the strong convergence of Mann’s alternating projection sequence in $\text{CAT}(\unicode[STIX]{x1D705})$ spaces with $\unicode[STIX]{x1D705}\geq 0$.
We consider equivariant continuous families of discrete one-dimensional operators over arbitrary dynamical systems. We introduce the concept of a pseudo-ergodic element of a dynamical system. We then show that all operators associated to pseudo-ergodic elements have the same spectrum and that this spectrum agrees with their essential spectrum. As a consequence we obtain that the spectrum is constant and agrees with the essential spectrum for all elements in the dynamical system if minimality holds.
New inequalities relating the norm $n(X)$ and the numerical radius $w(X)$ of invertible bounded linear Hilbert space operators were announced by Hosseini and Omidvar [‘Some inequalities for the numerical radius for Hilbert space operators’, Bull. Aust. Math. Soc.94 (2016), 489–496]. For example, they asserted that $w(AB)\leq$$2w(A)w(B)$ for invertible bounded linear Hilbert space operators $A$ and $B$. We identify implicit hypotheses used in their discovery. The inequalities and their proofs can be made good by adding the extra hypotheses which take the form $n(X^{-1})=n(X)^{-1}$. We give counterexamples in the absence of such additional hypotheses. Finally, we show that these hypotheses yield even stronger conclusions, for example, $w(AB)=w(A)w(B)$.