To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let S(n) be a unilateral shift operator on a Hilbert space of multiplicity n. In this paper, we prove a generalization of the theorem that if S(1) is unitarily equivalent to an operator matrix form relative to a decomposition ℳ ⊕ N, then E is in a certain class C0 which will be defined below.
Ahues (1987) and Bouldin (1990) have given sufficient conditions for the strong stability of a sequence (Tn) of operators at an isolated eigenvalue of an operator T. This paper provides a unified treatment of their results and also generalizes so as to facilitate their application to a broad class of operators.
If V is a system of weights on a completely regular Hausdorff space X and E is alocally convex space, then CV0(X, E) and CVb (X, E) are locally convex spaces of vector-valued continuous functions with topologies generated by seminorms which are weighted analogues of the supremum norm. In this paper we characterise multiplication operators on these spaces induced by scalar-valued and vector-valued mappings. Many examples are presented to illustrate the theory.
We present a symmetric version of a normed algebra of quotients for each ultraprime normed algebra. In addition, a C*-a1gebra of quotients of an arbitrary C*-a1gebra is introduced.
Suppose λ is an isolated eigenvalue of the (bounded linear) operator T on the Banach space X and the algebraic multiplicity of λ is finite. Let Tn be a sequence of operators on X that converge to T pointwise, that is, Tnx → Tx for every x ∈ X. If ‖(T − Tn)Tn‖ and ‖Tn(T − Tn)‖ converge to 0 then Tn is strongly stable at λ.
Spectrality and prespectrality of elementary operators , acting on the algebra B(k) of all bounded linear operators on a separable infinite-dimensional complex Hubert space K, or on von Neumann-Schatten classes in B(k), are treated. In the case when (a1, a2, …, an) and (b1, b2, …, bn) are two n—tuples of commuting normal operators on H, the complete characterization of spectrality is given.
We study conditions for such a matrix to be nonrecurrent. If P is nonrecurrent we study the invariant vectors of P (invariant column vectors and invariant row vectors).
The lack of completeness with respect to the semivariation norm, of the space of Banach space valued functions, Pettis integrable with respect to a measure μ, often impedes the direct extension of results involving integral representations, true in the finite-dimensional setting, to the general vector space setting. It is shown here that the space of functions with values in a space Y, μ-Archimedes integrable in a Banach space X embedded in Y, is complete with respect to convergence in semivariation, provided the embedding from X into Y is completely summing. The result is applied to the case when Y is a conuclear space, in particular, when X is a function space continuously included in a space of distributions.
We prove a version of the Feller-Miyadera-Phillips theorem characterizing the infinitesimal generators of positive C0-semigroups on ordered Banach spaces with normal cones. This is done in terms of N(A) as well as the canonical half-norms of Arendt Chernoff and Kato defined by N(a) = inf{‖b‖ |b ≥ a}, where N(A) = sup{N(Aa) |N(a) ≶ 1} for operator A. A corresponding result on –semigroups is also given.
We give algebraic criteria for distinguishing composition operators among all continuous linear operators on spaces of continuous functions with topologies generated by seminorms that are weighted analogues of the supremum norm. In another direction, we also characterize those self maps of the underlying topological space which induce composition operators on such weighted spaces, as well as determine conditions on these self maps which correspond to various basic properties of the induced composition operator. Our results are applied to a question concerning translation invariance which arises in the context of topological dynamics.
The notion of a scalar operator on a Banach space, in the sense of N. Dunford, is widened so as to cover those operators which can be approximated in the operator norm by linear combinations of disjoint values of an additive and multiplicative operator valued set function, P, on an algebra of sets in a space Ω such that P(Ω) = I, subject to some conditions guaranteeing that this definition is unambiguous. An operator T turns out to be scalar in this sense, if and only if, there exists a (not necessarily bounded) Boolean algebra of bounded projections such that the Banach algebra of operators it generates is semisimple and contains T.
We construct a suitable representation of a C*-algebra that carries single elements to rank one operators. We also prove an abstract spectral theorem for compact elements in the algebra. This leads naturally to an abstract definition of Cp-classes of compact elements in the algebra.
A proof is given of the Euler-Maclaurin sum formula, on a Banach space of differentiable vector-valued functions of bounded exponential growth, using the Laplace transformation. Some related summation formulae are proved by the same methods. Properties of the standard summation operator are proved, namely spectral properties and boundedness, continuity and differentiability results.
An operator form of the Euler-Maclaurin sum formula is obtained, expressing the sum of the Euler-Maclaurin infinite series in a closed derivation, whose spectrum is compact, not equal to {0}, and does not have 0 as a clusterpoint, as the difference between a summation operator and an antiderivation which is the local inverse of the derivation.
This paper is concerned with the numerical range and some related properties of the operator Δ/ S: T → AT – TB(T∈S), where A, B are (bounded linear) operators on the normed linear spaces X and Y. respectively, and S is a linear subspace of the space ℒ (Y, X) of all operators from Y to X. S is assumed to contain all finite operators, to be invariant under Δ, and to be suitably normed (not necessarily with the operator norm). Then the algebra numerical range of Δ/ S is equal to the difference of the algebra numerical ranges of A and B. When X = Y and S = ℒ (X), Δ is Hermitian (resp. normal) in ℒ (ℒ(X)) if and only if A–λ and B–λ are Hermitian (resp. normal) in ℒ(X)for some scalar λ;if X: = H is a Hilbert space and if S is a C *-algebra or a minimal norm ideal in ℒ(H)then any Hermitian (resp. normal) operator in S is of the form Δ/ S for some Hermitian (resp. normal) operators A and B. AT = TB implies A*T = TB* are hyponormal operators on the Hilbert spaces H1 and H2, respectively, and T is a Hilbert-Schmidt operator from H2 to H1.
A joint spectral theorem for an n-tuple of doubly commuting unbounded normal operators in a Hilbert space is proved by using the techniques of GB*-algebras.
Let B(H) be the Banach algebra of all (bounded linear) operators on an infinite-dimensional separable complex Hilbert space H and let be a bounded sequence of positive real numbers. For a given injective operator A in B(H) and a non-zero vector f in H, we put We define a weighted shift Tw with the weight sequence on the Hilbert space 12 of all square-summable complex sequences by . The main object of this paper is to characterize the invariant subspace lattice of Tw under various nice conditions on the operator A and the sequence .
and let ∂Ω be its boundary. If ϕ ∈ L∞ (∂Ω), we denote by Tϕ, the Toephtz operator with symbol ϕ acting on the Hardy space H2(∂Ω), and by J(∂Ω) the C*-subalgebra of B(H2(∂Ω)) generated by the Toeplitz operators with continuous symbol. Our main theorem asserts that J(∂Ω) contains the ideal K of all compact operators on H2(∂Ω), and that the symbol map ϕ→Tϕ induces an isomorphism of C(∂Ω) onto the quotient C*-algebra ℑ(∂Ω)/K. Similar results have been established before for other domains, and in particular when Ω is strongly pseudoconvex. The main interest of our results lies in their proofs: ours are elementary, whereas those used in the strongly pseudoconvex case depend heavily on the theory of the tangential Cauchy-Riemann operator.
The main result of this paper shows that the existence of commuting normal extension (c.n.e.) for an arbitrary family of commuting subnormal operators can be determined by considering appropriate families of multivariable weighted shifts. In proving this some known criteria for c.n.e. are generalized. It is also shown that a family of jointly quasi-normal operators has c.n.e.