We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for self-adjoint Jacobi matrices and Schrödinger operators, perturbed by dissipative potentials in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\ell ^1({\mathbb{N}})$ and $L^1(0,\infty )$ respectively, the finite section method does not omit any points of the spectrum. In the Schrödinger case two different approaches are presented. Many aspects of the proofs can be expected to carry over to higher dimensions, particularly for absolutely continuous spectrum.
Let $\alpha : 1, 1, \sqrt{x} , \mathop{( \sqrt{u} , \sqrt{v} , \sqrt{w} )}\nolimits ^{\wedge } $ be a backward 3-step extension of a recursively generated weighted sequence of positive real numbers with $1\leq x\leq u\leq v\leq w$ and let ${W}_{\alpha } $ be the associated weighted shift with weight sequence $\alpha $. The set of positive real numbers $x$ such that ${W}_{\alpha } $ is quadratically hyponormal for some $u, v$ and $w$ is described, solving an open problem due to Curto and Jung [‘Quadratically hyponormal weighted shifts with two equal weights’, Integr. Equ. Oper. Theory37 (2000), 208–231].
we prove that there exists a unique sequence $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $, real valued, such that the Hankel operators ${\Gamma }_{c} $ and ${\Gamma }_{\tilde {c} } $ of symbols $c= ({c}_{n} )_{n\geq 0} $ and $\tilde {c} = ({c}_{n+ 1} )_{n\geq 0} $, respectively, are selfadjoint compact operators on ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$ and have the sequences $({\lambda }_{j} )_{j\geq 1} $ and $({\mu }_{j} )_{j\geq 1} $, respectively, as non-zero eigenvalues. Moreover, we give an
explicit formula for $c$ and we describe the kernel of ${\Gamma }_{c} $ and of ${\Gamma }_{\tilde {c} } $ in terms of the sequences $({\lambda }_{j} )_{j\geq 1} $ and $({\mu }_{j} )_{j\geq 1} $. More generally, given two arbitrary sequences $({\rho }_{j} )_{j\geq 1} $ and $({\sigma }_{j} )_{j\geq 1} $ of positive numbers satisfying
we describe the set of sequences $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $ of complex numbers such that the Hankel operators ${\Gamma }_{c} $ and ${\Gamma }_{\tilde {c} } $ are compact on ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$ and have sequences $({\rho }_{j} )_{j\geq 1} $ and $({\sigma }_{j} )_{j\geq 1} $, respectively, as non-zero singular values.
Let A be a unital C*-algebra with the canonical (H) C*-bundle over the maximal ideal space of the centre of A, and let E(A) be the set of all elementary operators on A. We consider derivations on A which lie in the completely bounded norm closure of E(A), and show that such derivations are necessarily inner in the case when each fibre of is a prime C*-algebra. We also consider separable C*-algebras A for which is an (F) bundle. For these C*-algebras we show that the following conditions are equivalent: E(A) is closed in the operator norm; A as a Banach module over its centre is topologically finitely generated; fibres of have uniformly finite dimensions, and each restriction bundle of over a set where its fibres are of constant dimension is of finite type as a vector bundle.
In this paper, new conditions for the stability of V-geometrically ergodic Markov chains are introduced. The results are based on an extension of the standard perturbation theory formulated by Keller and Liverani. The continuity and higher regularity properties are investigated. As an illustration, an asymptotic expansion of the invariant probability measure for an autoregressive model with independent and identically distributed noises (with a nonstandard probability density function) is obtained.
We give an affirmative answer to one of the questions posed by Bourin regarding a special type of inequality referred to as subadditivity inequalities in the case of the Hilbert–Schmidt and the trace norms. We formulate the solution for arbitrary commuting positive operators, and we conjecture that it is true for all unitarily invariant norms and all commuting positive operators. New related trace inequalities are also presented.
Let $\phi $ and $\psi $ be analytic maps on the open unit disk $D$ such that $\phi (D) \subset D$. Such maps induce a weighted composition operator $C_{\phi ,\psi }$ acting on weighted Banach spaces of type $H^{\infty }$or on weighted Bergman spaces, respectively. We study when such operators are order bounded.
In this paper we prove sharp estimates for generalized eigenvectors of Hermitian Jacobi matrices associated with the spectral parameter lying in a gap of their essential spectra. The estimates do not depend on the main diagonals of these matrices. The types of estimates obtained for bounded and unbounded gaps are different. These estimates extend the previous ones found in [J. Janas, S. Naboko and G. Stolz, Decay bounds on eigenfunctions and the singular spectrum of unbounded Jacobi matrices. Int. Math. Res. Not.4 (2009), 736–764], for the spectral parameter being outside the whole spectrum of Jacobi matrices. Examples illustrating optimality of our results are also given.
We consider uniformly elliptic operators with Dirichlet or Neumann homogeneous boundary conditions on a domain Ω in ℝN. We consider deformations ϕ(Ω) of Ω obtained by means of a locally Lipschitz homeomorphism ϕ and we estimate the variation of the eigenfunctions and eigenvalues upon variation of ϕ. We prove general stability estimates without assuming uniform upper bounds for the gradients of the maps ϕ. As an application, we obtain estimates on the rate of convergence for eigenvalues and eigenfunctions when a domain with an outward cusp is approximated by a sequence of Lipschitz domains.
In general, multiplication of operators is not essentially commutative in an algebra generated by integral-type operators and composition operators. In this paper, we characterize the essential commutativity of the integral operators and composition operators from a mixed-norm space to a Bloch-type space, and give a complete description of the universal set of integral operators. Corresponding results for boundedness and compactness are also obtained.
Let 𝒟 be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space X and let δ:Alg 𝒟→Alg 𝒟 be a linear mapping. We show that δ is Jordan derivable at zero, that is, δ(AB+BA)=δ(A)B+Aδ(B)+δ(B)A+Bδ(A) whenever AB+BA=0 if and only if δ has the form δ(A)=τ(A)+λA for some derivation τ and some scalar λ. We also show that if the dimension of X is greater than 2, then δ satisfies δ(AB+BA)=δ(A)B+Aδ(B)+δ(B)A+Bδ(A)whenever AB=0if and only if δ is a derivation.
We characterize straightness of digital curves in the integer plane by means of difference operators. Earlier definitions of digital rectilinear segments have used, respectively, Rosenfeld’s chord property, word combinatorics, Reveillès’ double Diophantine inequalities, and the author’s refined hyperplanes. We prove that all these definitions are equivalent. We also characterize convexity of integer-valued functions on the integers with the help of difference operators.
We study the boundedness and compactness of Toeplitz operators Ta on Bergman spaces , 1 < p < ∞. The novelty is that we allow distributional symbols. It turns out that the belonging of the symbol to a weighted Sobolev space of negative order is sufficient for the boundedness of Ta. We show the natural relation of the hyperbolic geometry of the disc and the order of the distribution. A corresponding sufficient condition for the compactness is also derived.
We study Markov measures and p-adic random walks with the use of states on the Cuntz algebras Op. Via the Gelfand–Naimark–Segal construction, these come from families of representations of Op. We prove that these representations reflect selfsimilarity especially well. In this paper, we consider a Cuntz–Krieger type algebra where the adjacency matrix depends on a parameter q ( q=1 is the case of Cuntz–Krieger algebra). This is an ongoing work generalizing a construction of certain measures associated to random walks on graphs.
Let ℒ be a commutative subspace lattice and 𝒜=Alg ℒ. It is shown that every Jordan higher derivation from 𝒜 into itself is a higher derivation. We say that D=(δi)i∈ℕ is a higher derivable linear mapping at G if δn(AB)=∑ i+j=nδi(A)δj(B) for all n∈ℕ and A,B∈𝒜 with AB=G. We also prove that if D=(δi)i∈ℕ is a bounded higher derivable linear mapping at 0 from 𝒜 into itself and δn (I)=0for all n≥1 , or D=(δi)i∈ℕ is a higher derivable linear mapping at I from 𝒜 into itself, then D=(δi)i∈ℕ is a higher derivation.
We use induction and interpolation techniques to prove that a composition operator induced by a map ϕ is bounded on the weighted Bergman space of the right half-plane if and only if ϕ fixes the point at ∞ non-tangentially and if it has a finite angular derivative λ there. We further prove that in this case the norm, the essential norm and the spectral radius of the operator are all equal and are given by λ(2+α)/2.
Let A be a C*-algebra and let ΘA be the canonical contraction form the Haagerup tensor product of M(A) with itself to the space of completely bounded maps on A. In this paper we consider the following conditions on A: (a) A is a finitely generated module over the centre of M(A); (b) the image of ΘA is equal to the set E(A) of all elementary operators on A; and (c) the lengths of elementary operators on A are uniformly bounded. We show that A satisfies (a) if and only if it is a finite direct sum of unital homogeneous C*-algebras. We also show that if a separable A satisfies (b) or (c), then A is necessarily subhomogeneous and the C*-bundles corresponding to the homogeneous subquotients of A must be of finite type.
In this paper, we discuss the H1L-boundedness of commutators of Riesz transforms associated with the Schrödinger operator L=−△+V, where H1L(Rn) is the Hardy space associated with L. We assume that V (x) is a nonzero, nonnegative potential which belongs to Bq for some q>n/2. Let T1=V (x)(−△+V )−1, T2=V1/2(−△+V )−1/2 and T3 =∇(−△+V )−1/2. We prove that, for b∈BMO (Rn) , the commutator [b,T3 ]is not bounded from H1L(Rn)to L1 (Rn)as T3 itself. As an alternative, we obtain that [b,Ti ] , ( i=1,2,3 ) are of (H1L,L1weak) -boundedness.
Let A and B be C*-algebras, let X be an essential Banach A-bimodule and let T : A → B and S : A → X be continuous linear maps with T surjective. Suppose that T(a)T(b) + T(b)T(a) = 0 and S(a)b + bS(a) + aS(b) + S(b)a = 0 whenever a, b ε A are such that ab = ba = 0. We prove that then T = wΦ and S = D + Ψ, where w lies in the centre of the multiplier algebra of B, Φ: A → B is a Jordan epimorphism, D: A → X is a derivation and Ψ: A → X is a bimodule homomorphism.
We consider spectral radius algebras associated with C0 contractions. When the operator A is algebraic, we describe all invariant subspaces that are common for operators in its spectral radius algebra ℬA. When the operator A is not algebraic, ℬA is weakly dense and we characterize a set of rank-one operators in ℬA that is weakly dense in ℒ(ℋ).