We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $(X,d,\unicode[STIX]{x1D707})$ be a metric measure space endowed with a distance $d$ and a nonnegative, Borel, doubling measure $\unicode[STIX]{x1D707}$. Let $L$ be a nonnegative self-adjoint operator on $L^{2}(X)$. Assume that the (heat) kernel associated to the semigroup $e^{-tL}$ satisfies a Gaussian upper bound. In this paper, we prove that for any $p\in (0,\infty )$ and $w\in A_{\infty }$, the weighted Hardy space $H_{L,S,w}^{p}(X)$ associated with $L$ in terms of the Lusin (area) function and the weighted Hardy space $H_{L,G,w}^{p}(X)$ associated with $L$ in terms of the Littlewood–Paley function coincide and their norms are equivalent. This improves a recent result of Duong et al. [‘A Littlewood–Paley type decomposition and weighted Hardy spaces associated with operators’, J. Geom. Anal.26 (2016), 1617–1646], who proved that $H_{L,S,w}^{p}(X)=H_{L,G,w}^{p}(X)$ for $p\in (0,1]$ and $w\in A_{\infty }$ by imposing an extra assumption of a Moser-type boundedness condition on $L$. Our result is new even in the unweighted setting, that is, when $w\equiv 1$.
We analyze domination properties and factorization of operators in Banach spaces through subspaces of $L^{1}$-spaces. Using vector measure integration and extending classical arguments based on scalar integral bounds, we provide characterizations of operators factoring through subspaces of $L^{1}$-spaces of finite measures. Some special cases involving positivity and compactness of the operators are considered.
We use a generalised Nevanlinna counting function to compute the Hilbert–Schmidt norm of a composition operator on the Bergman space $L_{a}^{2}(\mathbb{D})$ and weighted Bergman spaces $L_{a}^{1}(\text{d}A_{\unicode[STIX]{x1D6FC}})$ when $\unicode[STIX]{x1D6FC}$ is a nonnegative integer.
where H: [0,+∞) → ℝ and f : [0, 1] × ℝ → ℝ are continuous and λ > 0 is a parameter. We show that if H satisfies a boundedness condition on a specified compact set, then this, together with an assumption that H is either affine or superlinear at +∞, implies existence of at least one positive solution to the problem, even in the case where we impose no growth conditions on f. Finally, since it can hold that f(t, y) < 0 for all (t, y) ∈ [0, 1]×ℝ, the semipositone problem is included as a special case of the existence result.
Wu [‘An order characterization of commutativity for $C^{\ast }$-algebras’, Proc. Amer. Math. Soc.129 (2001), 983–987] proved that if the exponential function on the set of all positive elements of a $C^{\ast }$-algebra is monotone in the usual partial order, then the algebra in question is necessarily commutative. In this note, we present a local version of that result and obtain a characterisation of central elements in $C^{\ast }$-algebras in terms of the order.
This paper is concerned with the modified Wigner (respectively, Wigner–Fokker–Planck) Poisson equation. The quantum mechanical model describes the transport of charged particles under the influence of the modified Poisson potential field without (respectively, with) the collision operator. Existence and uniqueness of a global mild solution to the initial boundary value problem in one dimension are established on a weighted $L^{2}$-space. The main difficulties are to derive a priori estimates on the modified Poisson equation and prove the Lipschitz properties of the appropriate potential term.
We analyse the 𝓁²(𝜋)-convergence rate of irreducible and aperiodic Markov chains with N-band transition probability matrix P and with invariant distribution 𝜋. This analysis is heavily based on two steps. First, the study of the essential spectral radius ress(P|𝓁²(𝜋)) of P|𝓁²(𝜋) derived from Hennion’s quasi-compactness criteria. Second, the connection between the spectral gap property (SG2) of P on 𝓁²(𝜋) and the V-geometric ergodicity of P. Specifically, the (SG2) is shown to hold under the condition α0≔∑m=−NNlim supi→+∞(P(i,i+m)P*(i+m,i)1∕2<1. Moreover, ress(P|𝓁²(𝜋)≤α0. Effective bounds on the convergence rate can be provided from a truncation procedure.
Let ${\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ be the set of Cowen–Douglas operators of index $n$ on a nonempty bounded connected open subset $\unicode[STIX]{x1D6FA}$ of $\mathbb{C}$. We consider the strong irreducibility of a class of Cowen–Douglas operators ${\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ on Banach spaces. We show ${\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})\subseteq {\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ and give some conditions under which an operator $T\in {\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ is strongly irreducible. All these results generalise similar results on Hilbert spaces.
In this paper we discuss the continuity of the Hausdorff dimension of the invariant set of generalised graph-directed systems given by contractive infinitesimal similitudes on bounded complete metric spaces. We use the theory of positive linear operators to show that the Hausdorff dimension varies continuously with the functions defining the generalised graph-directed system under suitable assumptions.
We study two-weight norm inequalities for a vector-valued operator from a weighted $L^{p}(\unicode[STIX]{x1D70E})$-space to mixed norm $L_{l^{s}}^{q}(\unicode[STIX]{x1D707})$ spaces, $1<p<\infty$, $0<q<p$. We apply these results to the boundedness of Wolff’s potentials.
This note furnishes an example showing that the main result (Theorem 4) in Toumi [‘When lattice homomorphisms of Archimedean vector lattices are Riesz homomorphisms’, J. Aust. Math. Soc.87 (2009), 263–273] is false.
We establish a spectral characterization theorem for the operators on complex Hilbert spaces of arbitrary dimensions that attain their norm on every closed subspace. The class of these operators is not closed under addition. Nevertheless, we prove that the intersection of these operators with the positive operators forms a proper cone in the real Banach space of hermitian operators.
The classical spaces ℓp+, 1 ≤ p < ∞, and Lp−, 1<p ≤ ∞, are countably normed, reflexive Fréchet spaces in which the Cesàro operator C acts continuously. A detailed investigation is made of various operator theoretic properties of C (e.g., spectrum, point spectrum, mean ergodicity) as well as certain aspects concerning the dynamics of C (e.g., hypercyclic, supercyclic, chaos). This complements the results of [3, 4], where C was studied in the spaces ℂℕ, Lploc(ℝ+) for 1 < p < ∞ and C(ℝ+), which belong to a very different collection of Fréchet spaces, called quojections; these are automatically Banach spaces whenever they admit a continuous norm.
In this paper we prove coincidence results concerning spaces of absolutely summing multilinear mappings between Banach spaces. The nature of these results arises from two distinct approaches: the coincidence of two a priori different classes of summing multilinear mappings, and the summability of all multilinear mappings defined on products of Banach spaces. Optimal generalizations of known results are obtained. We also introduce and explore new techniques in the field: for example, a technique to extend coincidence results for linear, bilinear and even trilinear mappings to general multilinear ones.
Let $H^{2}$ be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of $H^{2}$ have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with $\overline{\mathbb{D}}$ is Hilbert–Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.
We improve a previous result about the local energy decay for the damped wave equation on $\mathbb{R}^{d}$. The problem is governed by a Laplacian associated with a long-range perturbation of the flat metric and a short-range absorption index. Our purpose is to recover the decay ${\mathcal{O}}(t^{-d+\unicode[STIX]{x1D700}})$ in the weighted energy spaces. The proof is based on uniform resolvent estimates, given by an improved version of the dissipative Mourre theory. In particular, we have to prove the limiting absorption principle for the powers of the resolvent with inserted weights.
For every $p\in (0,\infty )$ we associate to every metric space $(X,d_{X})$ a numerical invariant $\mathfrak{X}_{p}(X)\in [0,\infty ]$ such that if $\mathfrak{X}_{p}(X)<\infty$ and a metric space $(Y,d_{Y})$ admits a bi-Lipschitz embedding into $X$ then also $\mathfrak{X}_{p}(Y)<\infty$. We prove that if $p,q\in (2,\infty )$ satisfy $q<p$ then $\mathfrak{X}_{p}(L_{p})<\infty$ yet $\mathfrak{X}_{p}(L_{q})=\infty$. Thus, our new bi-Lipschitz invariant certifies that $L_{q}$ does not admit a bi-Lipschitz embedding into $L_{p}$ when $2<q<p<\infty$. This completes the long-standing search for bi-Lipschitz invariants that serve as an obstruction to the embeddability of $L_{p}$ spaces into each other, the previously understood cases of which were metric notions of type and cotype, which however fail to certify the nonembeddability of $L_{q}$ into $L_{p}$ when $2<q<p<\infty$. Among the consequences of our results are new quantitative restrictions on the bi-Lipschitz embeddability into $L_{p}$ of snowflakes of $L_{q}$ and integer grids in $\ell _{q}^{n}$, for $2<q<p<\infty$. As a byproduct of our investigations, we also obtain results on the geometry of the Schatten $p$ trace class $S_{p}$ that are new even in the linear setting.
We study ultrasymmetric spaces in the case in which the fundamental function belongs to a limiting class of quasiconcave functions. In the process, we study limiting cases of $J$ interpolation spaces and establish new $J$–$K$ identities as well as a reiteration theorem for these limiting interpolation methods.
This paper considers Banach algebras with properties 𝔸 or 𝔹, introduced recently by Alaminos et al. The class of Banach algebras satisfying either of these two properties is quite large; in particular, it includes C*-algebras and group algebras on locally compact groups. Our first main result states that a continuous orthogonally additive n-homogeneous polynomial on a commutative Banach algebra with property 𝔸 and having a bounded approximate identity is of a standard form. The other main results describe Banach algebras A with property 𝔹 and having a bounded approximate identity that admit non-zero continuous symmetric orthosymmetric n-linear maps from An into ℂ.