To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove coincidence results concerning spaces of absolutely summing multilinear mappings between Banach spaces. The nature of these results arises from two distinct approaches: the coincidence of two a priori different classes of summing multilinear mappings, and the summability of all multilinear mappings defined on products of Banach spaces. Optimal generalizations of known results are obtained. We also introduce and explore new techniques in the field: for example, a technique to extend coincidence results for linear, bilinear and even trilinear mappings to general multilinear ones.
Let $H^{2}$ be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of $H^{2}$ have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with $\overline{\mathbb{D}}$ is Hilbert–Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.
We improve a previous result about the local energy decay for the damped wave equation on $\mathbb{R}^{d}$. The problem is governed by a Laplacian associated with a long-range perturbation of the flat metric and a short-range absorption index. Our purpose is to recover the decay ${\mathcal{O}}(t^{-d+\unicode[STIX]{x1D700}})$ in the weighted energy spaces. The proof is based on uniform resolvent estimates, given by an improved version of the dissipative Mourre theory. In particular, we have to prove the limiting absorption principle for the powers of the resolvent with inserted weights.
For every $p\in (0,\infty )$ we associate to every metric space $(X,d_{X})$ a numerical invariant $\mathfrak{X}_{p}(X)\in [0,\infty ]$ such that if $\mathfrak{X}_{p}(X)<\infty$ and a metric space $(Y,d_{Y})$ admits a bi-Lipschitz embedding into $X$ then also $\mathfrak{X}_{p}(Y)<\infty$. We prove that if $p,q\in (2,\infty )$ satisfy $q<p$ then $\mathfrak{X}_{p}(L_{p})<\infty$ yet $\mathfrak{X}_{p}(L_{q})=\infty$. Thus, our new bi-Lipschitz invariant certifies that $L_{q}$ does not admit a bi-Lipschitz embedding into $L_{p}$ when $2<q<p<\infty$. This completes the long-standing search for bi-Lipschitz invariants that serve as an obstruction to the embeddability of $L_{p}$ spaces into each other, the previously understood cases of which were metric notions of type and cotype, which however fail to certify the nonembeddability of $L_{q}$ into $L_{p}$ when $2<q<p<\infty$. Among the consequences of our results are new quantitative restrictions on the bi-Lipschitz embeddability into $L_{p}$ of snowflakes of $L_{q}$ and integer grids in $\ell _{q}^{n}$, for $2<q<p<\infty$. As a byproduct of our investigations, we also obtain results on the geometry of the Schatten $p$ trace class $S_{p}$ that are new even in the linear setting.
We study ultrasymmetric spaces in the case in which the fundamental function belongs to a limiting class of quasiconcave functions. In the process, we study limiting cases of $J$ interpolation spaces and establish new $J$–$K$ identities as well as a reiteration theorem for these limiting interpolation methods.
This paper considers Banach algebras with properties 𝔸 or 𝔹, introduced recently by Alaminos et al. The class of Banach algebras satisfying either of these two properties is quite large; in particular, it includes C*-algebras and group algebras on locally compact groups. Our first main result states that a continuous orthogonally additive n-homogeneous polynomial on a commutative Banach algebra with property 𝔸 and having a bounded approximate identity is of a standard form. The other main results describe Banach algebras A with property 𝔹 and having a bounded approximate identity that admit non-zero continuous symmetric orthosymmetric n-linear maps from An into ℂ.
The Weyl–von Neumann theorem asserts that two bounded self-adjoint operators A, B on a Hilbert space H are unitarily equivalent modulo compacts, i.e.uAu* + K = B for some unitary u 𝜖 u(H) and compact self-adjoint operator K, if and only if A and B have the same essential spectrum: σess (A) = σess (B). We study, using methods from descriptive set theory, the problem of whether the above Weyl–von Neumann result can be extended to unbounded operators. We show that if H is separable infinite dimensional, the relation of unitary equivalence modulo compacts for bounded self-adjoint operators is smooth, while the same equivalence relation for general self-adjoint operators contains a dense Gδ-orbit but does not admit classification by countable structures. On the other hand, the apparently related equivalence relation A ~ B ⇔ ∃u 𝜖 U(H) [u(A-i)–1u* - (B-i)–1 is compact] is shown to be smooth.
We show that, under special hypotheses, each 3-Jordan homomorphism ${\it\varphi}$ between Banach algebras ${\mathcal{A}}$ and ${\mathcal{B}}$ is a 3-homomorphism.
An investigation is made of the continuity, the compactness and the spectrum of the Cesàro operator $\mathsf{C}$ when acting on the weighted Banach sequence spaces $\ell _{p}(w)$, $1<p<\infty$, for a positive decreasing weight $w$, thereby extending known results for $\mathsf{C}$ when acting on the classical spaces $\ell _{p}$. New features arise in the weighted setting (for example, existence of eigenvalues, compactness) which are not present in $\ell _{p}$.
We use the best constants in the Khintchine inequality to generalise a theorem of Kato [‘Similarity for sequences of projections’, Bull. Amer. Math. Soc.73(6) (1967), 904–905] on similarity for sequences of projections in Hilbert spaces to the case of unconditional Schauder decompositions in $\ell _{p}$ spaces. We also sharpen a stability theorem of Vizitei [‘On the stability of bases of subspaces in a Banach space’, in: Studies on Algebra and Mathematical Analysis, Moldova Academy of Sciences (Kartja Moldovenjaska, Chişinău, 1965), 32–44; (in Russian)] in the case of unconditional Schauder decompositions in any Banach space.
We prove that if a uniformly bounded (or equidistantly uniformly bounded) Nemytskij operator maps the space of functions of bounded ${\it\varphi}$-variation with weight function in the sense of Riesz into another space of that type (with the same weight function) and its generator is continuous with respect to the second variable, then this generator is affine in the function variable (traditionally, in the second variable).
The purpose of this paper is to present a brief discussion of both the normed space of operator p-summable sequences in a Banach space and the normed space of sequentially p-limited operators. The focus is on proving that the vector space of all operator p-summable sequences in a Banach space is a Banach space itself and that the class of sequentially p-limited operators is a Banach operator ideal with respect to a suitable ideal norm- and to discuss some other properties and multiplication results of related classes of operators. These results are shown to fit into a general discussion of operator [Y,p]-summable sequences and relevant operator ideals.
We establish interior and trace embedding results for Sobolev functions on a class of bounded non-smooth domains. Also, we define the corresponding generalized Maz'ya spaces of variable exponent, and obtain embedding results similar as in the constant case. Some relations between the variable exponent Maz'ya spaces and the variable exponent Sobolev spaces are also achieved. At the end, we give an application of the previous results for the well-posedness of a class of quasi-linear equations with variable exponent.
Let $A_{{\it\alpha}}^{p}$ be the weighted Bergman space of the unit ball in ${\mathcal{C}}^{n}$, $n\geq 2$. Recently, Miao studied products of two Toeplitz operators defined on $A_{{\it\alpha}}^{p}$. He proved a necessary condition and a sufficient condition for boundedness of such products in terms of the Berezin transform. We modify the Berezin transform and improve his sufficient condition for products of Toeplitz operators. We also investigate products of two Hankel operators defined on $A_{{\it\alpha}}^{p}$, and products of the Hankel operator and the Toeplitz operator. In particular, in both cases, we prove sufficient conditions for boundedness of the products.
Given a positive Borel measure ${\it\mu}$ on the $n$-dimensional Euclidean space $\mathbb{C}^{n}$, we characterise the boundedness (and compactness) of Toeplitz operators $T_{{\it\mu}}$ between Fock spaces $F^{\infty }({\it\varphi})$ and $F^{p}({\it\varphi})$ with $0<p\leq \infty$ in terms of $t$-Berezin transforms and averaging functions of ${\it\mu}$. Our result extends recent work of Mengestie [‘On Toeplitz operators between Fock spaces’, Integral Equations Operator Theory78 (2014), 213–224] and others.
Assuming $T_{0}$ to be an m-accretive operator in the complex Hilbert space ${\mathcal{H}}$, we use a resolvent method due to Kato to appropriately define the additive perturbation $T=T_{0}+W$ and prove stability of square root domains, that is,
which is most suitable for partial differential equation applications. We apply this approach to elliptic second-order partial differential operators of the form
in $L^{2}({\rm\Omega})$ on certain open sets ${\rm\Omega}\subseteq \mathbb{R}^{n}$, $n\in \mathbb{N}$, with Dirichlet, Neumann, and mixed boundary conditions on $\partial {\rm\Omega}$, under general hypotheses on the (typically, non-smooth, unbounded) coefficients and on $\partial {\rm\Omega}$.
We will characterize the boundedness and compactness of weighted composition operators on the closed subalgebra H∞ ∩ $\mathcal{B}$o between the disk algebra and the space of bounded analytic functions on the open unit disk.
Let X and Y be infinite-dimensional complex Banach spaces, and ${\mathcal B}$(X) (resp. ${\mathcal B}$(Y)) be the algebra of all bounded linear operators on X (resp. on Y). For an operator T ∈ ${\mathcal B}$(X) and a vector x ∈ X, let σT(x) denote the local spectrum of T at x. For two nonzero vectors x0 ∈X and y0 ∈ Y, we show that a map ϕ from ${\mathcal B}$(X) onto ${\mathcal B}$(Y) satisfies
if and only if there exists a bijective bounded linear mapping A from X into Y such that Ax0 = y0 and either ϕ(T) = ATA−1 or ϕ(T) = -ATA−1 for all T ∈ ${\mathcal B}$(X).
We prove continuity in generalized parabolic Morrey spaces of sublinear operators generated by the parabolic Calderón—Zygmund operator and by the commutator of this operator with bounded mean oscillation (BMO) functions. As a consequence, we obtain a global -regularity result for the Cauchy—Dirichlet problem for linear uniformly parabolic equations with vanishing mean oscillation (VMO) coefficients.