We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ϕ:D→D and ψ:D→ℂ be analytic maps. These induce a weighted composition operator ψCϕ acting between weighted Bloch type spaces. Under some assumptions on the weights we give a necessary as well as a sufficient condition when such an operator is continuous.
Let , let G and H belocally compact groups and let ω be a continuous homomorphism of G into H. We prove, if G is amenable, the existence of a linear contraction of the Banach algebra CVp(G) of the p-convolution operators on G into CVp(H) which extends the usual definition of the image of a bounded measure by ω. We also discuss the uniqueness of this linear contraction onto important subalgebras of CVp(G). Even if G and H are abelian, we obtain new results. Let Gd denote the group G provided with a discrete topology. As a corollary, we obtain, for every discrete measure, , for Gd amenable. For arbitrary G, we also obtain . These inequalities were already known for p=2 . The proofs presented in this paper avoid the use of the Hilbertian techniques which are not applicable to . Finally, for Gd amenable, we construct a natural map of CVp (G)into CVp (Gd) .
T. A. Gillespie showed that on a Hilbert space the sum of a well-bounded operator and a commuting real scalar-type spectral operator is well-bounded. A longstanding question asked whether this might still hold true for operators on Lp spaces for . We show here that this conjecture is false. Indeed for a large class of reflexive spaces, the above property characterizes Hilbert space.
We consider differences of composition operators between given weighted Banach spaces or Hv0 of analytic functions with weighted sup-norms and give estimates for the distance of these differences to the space of compact operators. We also study boundedness and compactness of the operators. Some examples illustrate our results.
Let A be a C*-algebra, and let X be a Banach A-bimodule. Johnson [B. E. Johnson, ‘Local derivations on C*-algebras are derivations’, Trans. Amer. Math. Soc. 353 (2000), 313–325] showed that local derivations from A into X are derivations. We extend this concept of locality to the higher cohomology of a C*-algebra and show that, for every , bounded local n-cocycles from A(n) into X are n-cocycles.
Let ϕ and ψ be analytic self-maps of the open unit disk. Each of them induces a composition operator, Cϕ and Cψ respectively, acting between weighted Bergman spaces of infinite order. We show that the difference Cϕ−Cψ is compact if and only if both operators are compact or both operators are not compact and the pseudohyperbolic distance of the functions ϕ and ψ tends to zero if ∣ϕ(z)∣→1 or ∣ψ(z)∣→1.
For an open subset Ω of the Euclidean space Rn, a measurable non-singular transformation T: Ω → Ω and a real-valued measurable function u on Rn, we study the weighted composition operator uCτ: f ↦ u · (f º T) on the Orlicz-Sobolev space W1·Ψ (Ω) consxsisting of those functions of the Orlicz space LΨ (Ω) whose distributional derivatives of the first order belong to LΨ (Ω). We also discuss a sufficient condition under which uCτ is compact.
For a wide family of multivariate Hausdorff operators, the boundedness of an operator from this family i s proved on the real Hardy space. By this we extend and strengthen previous results due to Andersen and Móricz.
We prove the boundedness of Bergman-type operators on mixed norm spaces Lp·q (φ) for 0 < q < 1 and 0 < p ≤ ∞ of functions on the unit ball of ” with an application to Gleason's problem.
In this paper we provide examples and counterexamples of symmetric ideals of multilinear mappings between Banach spaces and prove that if I1, …, In are operator ideals, then the ideals of multilinear mappings L(I1, …, In) and /I1, …, In/ are symmetric if and only if I1 = … = In.
By Pick's invariant form of Schwarz's lemma, an analytic function B (z) which is bounded by one in the unit disk D = {z: |z| < 1} satisfies the inequality
at each point α of D. Recently, several authors [2, 10, 11] have obtained more general estimates for higher order derivatives. Best possible estimates are due to Ruscheweyh [12]. Below in §2 we use a Hilbert space method to derive Ruscheweyh's results. The operator method applies equally well to operator-valued functions, and this generalization is outlined in §3.
Let (X, ρ, μ)d, θ be a space of homogeneous type with d < 0 and θ ∈ (0, 1], b be a para-accretive function, ε ∈ (0, θ], ∣s∣ > ∈ and a0 ∈ (0, 1) be some constant depending on d, ∈ and s. The authors introduce the Besov space bBspq (X) with a0 > p ≧ ∞, and the Triebel-Lizorkin space bFspq (X) with a0 > p > ∞ and a0 > q ≧∞ by first establishing a Plancherel-Pôlya-type inequality. Moreover, the authors establish the frame and the Littlewood-Paley function characterizations of these spaces. Furthermore, the authors introduce the new Besov space b−1 Bs (X) and the Triebel-Lizorkin space b−1 Fspq (X). The relations among these spaces and the known Hardy-type spaces are presented. As applications, the authors also establish some real interpolation theorems, embedding theorems, T b theorems, and the lifting property by introducing some new Riesz operators of these spaces.
Inspired by a statement of W. Luh asserting the existence of entire functions having together with all their derivatives and antiderivatives some kind of additive universality or multiplicative universality on certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we introduce in this paper the new concept of U-operators, which are defined on the space of entire functions. Concrete examples, including differential and antidifferential operators, composition, multiplication and shift operators, are studied. A result due to Luh, Martirosian and Müller about the existence of universal entire functions with gap power series is also strengthened.
Composition operators Cτ between Orlicz spaces Lϕ (Ω, Σ, μ) generated by measurable and nonsingular transformations τ from Ω into itself are considered. We characterize boundedness and compactness of the composition operator between Orlicz spaces in terms of properties of the mapping τ, the function ϕ and the measure space (Ω, Σ, μ). These results generalize earlier results known for Lp-spaces.
The integration of vector (and operator) valued functions with respect to vector (and operator) valued measures can be simplified by assuming that the measures involved take values in the positive elements of a Banach lattice.
We study linear jump parameter systems of differential and difference equations whose coefficients depend on the state of a semi-Markov process. We derive systems of equations for the first two moments of the random solutions of these jump parameter systems, and illustrate how moment equations can be used in examining their asymptotic stability.
Let X, Y be compact Hausdorff spaces and E, F be Banach spaces. A linear map T: C(X, E) → C(Y, F) is separating if Tf, Tg have disjoint cozeroes whenever f, g have disjoint cozeroes. We prove that a biseparating linear bijection T (that is, T and T-1 are separating) is a weighted composition operator Tf = h · f o ϕ. Here, h is a function from Y into the set of invertible linear operators from E onto F, and ϕ, is a homeomorphism from Y onto X. We also show that T is bounded if and only if h(y) is a bounded operator from E onto F for all y in Y. In this case, h is continuous with respect to the strong operator topology.
In this note we examine the relationships between a subnormal shift, the measure its moment sequence generates, and those of a large family of weighted shifts associated with the original shift. We examine the effects on subnormality of adding a new weight or changing a weight. We also obtain formulas for evaluating point mass at the origin for the measure associated with the shift. In addition, we examine the relationship between the measure associated with a subnormal shift and those of a family of shifts substantially different from the original shift.
This paper studies the concept of strongly omnipresent operators that was recently introduced by the first two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a function f such that Tf exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent composition and multiplication operators.
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. The associated Toeplitz algebras have a universal property, and their representations are faithful if the generating isometries satisfy a joint properness condition. When applied to right-angled Artin groups this yields a uniqueness theorem for the C*-algebra generated by a collection of isometries such that any two of them either *-commute or else have orthogonal ranges. The analogous result fails to hold for the nonabelian Artin groups of finite type considered by Brieskorn and Saito, and Deligne.