To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Composition operators Cτ between Orlicz spaces Lϕ (Ω, Σ, μ) generated by measurable and nonsingular transformations τ from Ω into itself are considered. We characterize boundedness and compactness of the composition operator between Orlicz spaces in terms of properties of the mapping τ, the function ϕ and the measure space (Ω, Σ, μ). These results generalize earlier results known for Lp-spaces.
The integration of vector (and operator) valued functions with respect to vector (and operator) valued measures can be simplified by assuming that the measures involved take values in the positive elements of a Banach lattice.
We study linear jump parameter systems of differential and difference equations whose coefficients depend on the state of a semi-Markov process. We derive systems of equations for the first two moments of the random solutions of these jump parameter systems, and illustrate how moment equations can be used in examining their asymptotic stability.
Let X, Y be compact Hausdorff spaces and E, F be Banach spaces. A linear map T: C(X, E) → C(Y, F) is separating if Tf, Tg have disjoint cozeroes whenever f, g have disjoint cozeroes. We prove that a biseparating linear bijection T (that is, T and T-1 are separating) is a weighted composition operator Tf = h · f o ϕ. Here, h is a function from Y into the set of invertible linear operators from E onto F, and ϕ, is a homeomorphism from Y onto X. We also show that T is bounded if and only if h(y) is a bounded operator from E onto F for all y in Y. In this case, h is continuous with respect to the strong operator topology.
In this note we examine the relationships between a subnormal shift, the measure its moment sequence generates, and those of a large family of weighted shifts associated with the original shift. We examine the effects on subnormality of adding a new weight or changing a weight. We also obtain formulas for evaluating point mass at the origin for the measure associated with the shift. In addition, we examine the relationship between the measure associated with a subnormal shift and those of a family of shifts substantially different from the original shift.
This paper studies the concept of strongly omnipresent operators that was recently introduced by the first two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a function f such that Tf exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent composition and multiplication operators.
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. The associated Toeplitz algebras have a universal property, and their representations are faithful if the generating isometries satisfy a joint properness condition. When applied to right-angled Artin groups this yields a uniqueness theorem for the C*-algebra generated by a collection of isometries such that any two of them either *-commute or else have orthogonal ranges. The analogous result fails to hold for the nonabelian Artin groups of finite type considered by Brieskorn and Saito, and Deligne.
In this note we investigate lacunarity or ‘thin’ subsets in the dual object of a compact group via different classes of summing operators between Banach spaces. In particular, we give characterisations of Sidon and ∧ (p) sets, 2 < p < ∞
In this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.
This paper gives a complete classification of essentially commutative C*-algebras whose essential spectrum is homeomorphic to S2n−1 by their characteristic numbers. Let 1, 2 be such two C*-algebras; then they are C*-isomorphic if and only if they have the same n-th characteristic number. Furthermore, let γn() = m then is C*-isomorphic to C*(Mzl, …, Mzn) if m = 0, is C*-isomorphic C*(Tz1, …, Tzn−1, Tznm) if m ≠ 0. Some examples are given to show applications of the classfication theorem. We finally remark that the proof of the theorem depends on a construction of a complete system of representatives of Ext(S2n−1).
A holomorphic map ψ of the unit disk ito itself induces an operator Cψ on holomorphic functions by composition. We characterize bounded and compact composition operators Cψ on Qp spaces, which coincide with the BMOA for p = 1 and Bloch spaces for p > 1. We also give boundedness and compactness characterizations of Cψ from analytic function space X to Qp spaces, X = Dirichlet space D, Bloch space B or B0 = {f: f′ ∈ H∞}.
One of the useful features of spectral measures which happen to be equicontinuous is that their associated integration maps are bicontinuous isomorphisms of the corresponding L1-space onto their ranges. It is shown here that equicontinuity is not necessary for this to be the case; a somewhat weaker property suffices. This is of some interest in practice since there are many natural examples of spectral measures which fail to be equiconontinuous.
We characterize the boundedness and compactness of weighted composition operators between weighted Banach spaces of analytic functions and . we estimate the essential norm of a weighted composition operator and compute it for those Banach spaces which are isomorphic to c0. We also show that, when such an operator is not compact, it is an isomorphism on a subspace isomorphic to c0 or l∞. Finally, we apply these results to study composition operators between Bloch type spaces and little Bloch type spaces.
In this paper, from several commutative self-adjoint operators on a Hilbert space, we define a class of spaces of fundamental functions and generalized functions, which are characterized completely by selfadjoint operators. Specially, using the common eigenvectors of these self-adjoint operators, we give the general form of expansion in series of generalized functions
Let A and B be (not necessarily bounded) linear operators on a Banach lattice E such that |(s – B)-1x|≤ (s – A)-1|x| for all x in E and sufficiently large s ∈ R. The main purpose of this paper is to investigate the relation between the spectra σ(B) and σ(A) of B and A, respectively. We apply our results to study asymptotic properties of dominated C0-semigroups.
In this note, a characterization of the Möbius invariant space Qp for the range 1 - 1/n lt; p ≤ 1 is given. As a special case p = 1, we get the Möbius boundedness of BMOA in the space H2. This extends the corresponding result for 1-dimension.
The authors establish the boundedness on the Herz spaces and the weak Herz spaces for a large class of rough singular integral operators and their corresponding fractional versions. Applications are given to Fefferman's rough singular integral operators, their fractional versions, their commutators with BMO() functions and Ricci-Stein oscillatory singular integral operators. Some new results are obtained.
In this paper we show that, for analytic composition operators between weighted Bergman spaces (including Hardy spaces) and as far as boundedness, compactness, order boundedness and certain summing properties of the adjoint are concerned, it is possible to modify domain spaces in a systematic fashion: there is a space of analytic functions which embeds continuously into each of the spaces under consideration and on which the above properties of the operator are decided.
A remarkable consequence is that, in the setting of composition operators between weighted Bergman spaces, the properties in question can be identified as properties of the operator as a map between appropriately chosen Hilbert spaces.
We consider the space L1 (ν, X) of all real functions that are integrable with respect to a measure v with values in a real Fréchet space X. We study L-weak compactness in this space. We consider the problem of the relationship between the existence of copies of l∞ in the space of all linear continuous operators from a complete DF-space Y to a Fréchet lattice E with the Lebesgue property and the coincidence of this space with some ideal of compact operators. We give sufficient conditions on the measure ν and the space X that imply that L1 (ν, X) has the Dunford-Pettis property. Applications of these results to Fréchet AL-spaces and Köthe sequence spaces are also given.
We characterize those analytic self-maps ϕ of the unit disc which generate bounded or compact composition operators Cϕ between given weighted Banach spaces H∞v or H0v of analytic functions with the weighted sup-norms. We characterize also those composition operators which are bounded or compact with respect to all reasonable weights v.