We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we provide a complete description of the spectra of linear fractional composition operators acting on the growth space and Bloch space over the upper half-plane. In addition, we also prove that the norm, essential norm, spectral radius and essential spectral radius of a composition operator acting on the growth space are all equal.
We characterize all bounded Hankel operators $\unicode[STIX]{x1D6E4}$ such that $\unicode[STIX]{x1D6E4}^{\ast }\unicode[STIX]{x1D6E4}$ has finite spectrum. We identify spectral data corresponding to such operators and construct inverse spectral theory including the characterization of these spectral data.
We establish the mapping properties of Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces. In particular, we have the mapping properties of the Laplace transform, the Hankel transforms, the Kontorovich-Lebedev transform and some oscillatory integral operators. We achieve these mapping properties by using an interpolation functor that can explicitly generate a given rearrangement-invariant quasi-Banach function space via Lebesgue spaces.
It is not known whether the inverse of a frequently hypercyclic bilateral weighted shift on c0(ℤ) is again frequently hypercyclic. We show that the corresponding problem for upper frequent hypercyclicity has a positive answer. We characterise, more generally, when bilateral weighted shifts on Banach sequence spaces are (upper) frequently hypercyclic.
We study some basic properties of the class of universal operators on Hilbert spaces, and provide new examples of universal operators and universal pairs.
Let L be a one-to-one operator of type ω in L2(ℝn), with ω∈[0, π/2), which has a bounded holomorphic functional calculus and satisfies the Davies–Gaffney estimates. Let p(·): ℝn→(0, 1] be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the authors introduce the variable Hardy space $H_L^{p(\cdot )} ({\open R}^n)$ associated with L. By means of variable tent spaces, the authors establish the molecular characterization of $H_L^{p(\cdot )} ({\open R}^n)$. Then the authors show that the dual space of $H_L^{p(\cdot )} ({\open R}^n)$ is the bounded mean oscillation (BMO)-type space ${\rm BM}{\rm O}_{p(\cdot ),{\kern 1pt} L^ * }({\open R}^n)$, where L* denotes the adjoint operator of L. In particular, when L is the second-order divergence form elliptic operator with complex bounded measurable coefficients, the authors obtain the non-tangential maximal function characterization of $H_L^{p(\cdot )} ({\open R}^n)$ and show that the fractional integral L−α for α∈(0, (1/2)] is bounded from $H_L^{p(\cdot )} ({\open R}^n)$ to $H_L^{q(\cdot )} ({\open R}^n)$ with (1/p(·))−(1/q(·))=2α/n, and the Riesz transform ∇ L−1/2 is bounded from $H_L^{p(\cdot )} ({\open R}^n)$ to the variable Hardy space Hp(·)(ℝn).
The algebra of all Dirichlet series that are uniformly convergent in the half-plane of complex numbers with positive real part is investigated. When it is endowed with its natural locally convex topology, it is a non-nuclear Fréchet Schwartz space with basis. Moreover, it is a locally multiplicative algebra but not a Q-algebra. Composition operators on this space are also studied.
We consider equivariant continuous families of discrete one-dimensional operators over arbitrary dynamical systems. We introduce the concept of a pseudo-ergodic element of a dynamical system. We then show that all operators associated to pseudo-ergodic elements have the same spectrum and that this spectrum agrees with their essential spectrum. As a consequence we obtain that the spectrum is constant and agrees with the essential spectrum for all elements in the dynamical system if minimality holds.
Let $\unicode[STIX]{x1D711}$ be an analytic self-map of the unit disc. If $\unicode[STIX]{x1D711}$ is analytic in a neighbourhood of the closed unit disc, we give a precise formula for the essential norm of the composition operator $C_{\unicode[STIX]{x1D711}}$ on the weighted Dirichlet spaces ${\mathcal{D}}_{\unicode[STIX]{x1D6FC}}$ for $\unicode[STIX]{x1D6FC}>0$. We also show that, for a univalent analytic self-map $\unicode[STIX]{x1D711}$ of $\mathbb{D}$, if $\unicode[STIX]{x1D711}$ has an angular derivative at some point of $\unicode[STIX]{x2202}\mathbb{D}$, then the essential norm of $C_{\unicode[STIX]{x1D711}}$ on the Dirichlet space is equal to one.
We characterize those non-negative, measurable functions ψ on [0, 1] and positive, continuous functions ω1 and ω2 on ℝ+ for which the generalized Hardy–Cesàro operator
defines a bounded operator Uψ: L1(ω1) → L1(ω2) This generalizes a result of Xiao [7] to weighted spaces. Furthermore, we extend Uψ to a bounded operator on M(ω1) with range in L1(ω2) ⊕ ℂδ0, where M(ω1) is the weighted space of locally finite, complex Borel measures on ℝ+. Finally, we show that the zero operator is the only weakly compact generalized Hardy–Cesàro operator from L1(ω1) to L1(ω2).
Let X be a complex Banach space and denote by ${\cal L}(X)$ the Banach algebra of all bounded linear operators on X. We prove that if φ: ${\cal L}(X) \to {\cal L}(X)$ is a linear surjective map such that for each $T \in {\cal L}(X)$ and x ∈ X the local spectrum of φ(T) at x and the local spectrum of T at x are either both empty or have at least one common value, then φ(T) = T for all $T \in {\cal L}(X)$. If we suppose that φ always preserves the modulus of at least one element from the local spectrum, then there exists a unimodular complex constant c such that φ(T) = cT for all $T \in {\cal L}(X)$.
We establish an extension of the Banach–Stone theorem to a class of isomorphisms more general than isometries in a noncompact framework. Some applications are given. In particular, we give a canonical representation of some (not necessarily linear) operators between products of function spaces. Our results are established for an abstract class of function spaces included in the space of all continuous and bounded functions defined on a complete metric space.
We show that if 4 ≤ 2(α + 2) ≤ p, then ∥H∥Ap,α → Ap,α = $\frac{\pi}{\sin{\frac{(\alpha+2)\pi}{p}}}$, while if 2 ≤ α +2 < p < 2(α+2), upper bound for the norm ∥H∥Ap,α → Ap,α, better then known, is obtained.
We introduce and study Hankel operators defined on the Hardy space of regular functions of a quaternionic variable. Theorems analogous to those of Nehari and Fefferman are proved.
In this note semi-bounded self-adjoint extensions of symmetric operators are investigated with the help of the abstract notion of quasi boundary triples and their Weyl functions. The main purpose is to provide new sufficient conditions on the parameters in the boundary space to induce self-adjoint realizations, and to relate the decay of the Weyl function to estimates on the lower bound of the spectrum. The abstract results are illustrated with uniformly elliptic second-order partial differential equations on domains with non-compact boundaries.
Let ${\mathcal{A}}$ be a unital torsion-free algebra over a unital commutative ring ${\mathcal{R}}$. To characterise Lie $n$-higher derivations on ${\mathcal{A}}$, we give an identity which enables us to transfer problems related to Lie $n$-higher derivations into the same problems concerning Lie $n$-derivations. We prove that: (1) if every Lie $n$-derivation on ${\mathcal{A}}$ is standard, then so is every Lie $n$-higher derivation on ${\mathcal{A}}$; (2) if every linear mapping Lie $n$-derivable at several points is a Lie $n$-derivation, then so is every sequence $\{d_{m}\}$ of linear mappings Lie $n$-higher derivable at these points; (3) if every linear mapping Lie $n$-derivable at several points is a sum of a derivation and a linear mapping vanishing on all $(n-1)$th commutators of these points, then every sequence $\{d_{m}\}$ of linear mappings Lie $n$-higher derivable at these points is a sum of a higher derivation and a sequence of linear mappings vanishing on all $(n-1)$th commutators of these points. We also give several applications of these results.
The goal of this paper is to characterize the operating functions on modulation spaces $M^{p,1}(\mathbb{R})$ and Wiener amalgam spaces $W^{p,1}(\mathbb{R})$. This characterization gives an affirmative answer to the open problem proposed by Bhimani (Composition Operators on Wiener amalgam Spaces, arXiv: 1503.01606) and Bhimani and Ratnakumar (J. Funct. Anal. 270 (2016), pp. 621–648).
We carry out an in-depth study of some domination and smoothing properties of linear operators and of their role within the theory of eventually positive operator semigroups. On the one hand, we prove that, on many important function spaces, they imply compactness properties. On the other hand, we show that these conditions can be omitted in a number of Perron–Frobenius type spectral theorems. We furthermore prove a Kreĭn–Rutman type theorem on the existence of positive eigenvectors and eigenfunctionals under certain eventual positivity conditions.
In this paper, we study spectral properties and local spectral properties of ∞-complex symmetric operators T. In particular, we prove that if T is an ∞-complex symmetric operator, then T has the decomposition property (δ) if and only if T is decomposable. Moreover, we show that if T and S are ∞-complex symmetric operators, then so is T ⊗ S.
For a von Neumann subalgebra $A \, \subseteq \, {\cal B}({\cal H})$ and any two elements a, b ∈ A with a normal, such that the corresponding derivations da and db satisfy the condition ‖db(x)‖ ≤ ‖da(x)‖ for all x ∈ A, there exist completely bounded (a)ʹ-bimodule map $\varphi : {\cal B}({\cal H}) \rightarrow {\cal B}({\cal H})$ such that db|A = φ da|A=daφ|A. (In particular db(A) ⊆ da(A).) Moreover, if A is a factor, then φ can be taken to be normal and these equalities hold on ${\cal B}({\cal H})$ instead of just on A. This result is not true for general (even primitive) C*-algebras ${\cal A}$.