To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present some comparison results for solutions to certain non-local elliptic and parabolic problems that involve the fractional Laplacian operator and mixed boundary conditions, given by a zero Dirichlet datum on part of the complementary of the domain and zero Neumann data on the rest. These results represent a non-local generalization of a Hopf's lemma for elliptic and parabolic problems with mixed conditions. In particular we prove the non-local version of the results obtained by Dávila and Dávila and Dupaigne for the classical case s = 1 in [23, 24] respectively.
where $\tau :{\open R}^n\to {\open R}^n$ is a general function. In particular, for the linear choices $\tau (x)=0$, $\tau (x)=x$ and $\tau (x)={x}/{2}$ this covers the well-known Kohn–Nirenberg, anti-Kohn–Nirenberg and Weyl quantizations, respectively. Quantizations of such type appear naturally in the analysis on nilpotent Lie groups for polynomial functions τ and here we investigate the corresponding calculus in the model case of ${\open R}^n$. We also give examples of nonlinear τ appearing on the polarized and non-polarized Heisenberg groups.
A basic fact about $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is that it is closely associated with the multilinear Littlewood–Paley $g_{\unicode[STIX]{x1D706}}^{\ast }$ function. In this paper we first investigate the boundedness of $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ on products of weighted Lebesgue spaces. Then, the weighted endpoint $L\log L$ type estimate and strong estimate for the commutators of $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ will be demonstrated.
We use a unified approach to study the boundedness of fractional integral operators on $\unicode[STIX]{x1D6FC}$-modulation spaces and find sharp conditions for boundedness in the full range.
We characterize those non-negative, measurable functions ψ on [0, 1] and positive, continuous functions ω1 and ω2 on ℝ+ for which the generalized Hardy–Cesàro operator
defines a bounded operator Uψ: L1(ω1) → L1(ω2) This generalizes a result of Xiao [7] to weighted spaces. Furthermore, we extend Uψ to a bounded operator on M(ω1) with range in L1(ω2) ⊕ ℂδ0, where M(ω1) is the weighted space of locally finite, complex Borel measures on ℝ+. Finally, we show that the zero operator is the only weakly compact generalized Hardy–Cesàro operator from L1(ω1) to L1(ω2).
We find logarithmic asymptotics of $L_{2}$-small deviation probabilities for weighted stationary Gaussian processes (both for real and complex-valued) having a power-type discrete or continuous spectrum. Our results are based on the spectral theory of pseudo-differential operators developed by Birman and Solomyak.
We establish the bounds of Marcinkiewicz integrals associated to surfaces of revolution generated by two polynomial mappings on Triebel–Lizorkin spaces and Besov spaces when their integral kernels are given by functions $\unicode[STIX]{x1D6FA}\in H^{1}(\text{S}^{n-1})\cup L(\log ^{+}L)^{1/2}(\text{S}^{n-1})$. Our main results represent improvements as well as natural extensions of many previously known results.
Given a compact Lie group $G$, in this paper we establish $L^{p}$-bounds for pseudo-differential operators in $L^{p}(G)$. The criteria here are given in terms of the concept of matrix symbols defined on the noncommutative analogue of the phase space $G\times \widehat{G}$, where $\widehat{G}$ is the unitary dual of $G$. We obtain two different types of $L^{p}$ bounds: first for finite regularity symbols and second for smooth symbols. The conditions for smooth symbols are formulated using $\mathscr{S}_{\unicode[STIX]{x1D70C},\unicode[STIX]{x1D6FF}}^{m}(G)$ classes which are a suitable extension of the well-known $(\unicode[STIX]{x1D70C},\unicode[STIX]{x1D6FF})$ ones on the Euclidean space. The results herein extend classical $L^{p}$ bounds established by C. Fefferman on $\mathbb{R}^{n}$. While Fefferman’s results have immediate consequences on general manifolds for $\unicode[STIX]{x1D70C}>\max \{\unicode[STIX]{x1D6FF},1-\unicode[STIX]{x1D6FF}\}$, our results do not require the condition $\unicode[STIX]{x1D70C}>1-\unicode[STIX]{x1D6FF}$. Moreover, one of our results also does not require $\unicode[STIX]{x1D70C}>\unicode[STIX]{x1D6FF}$. Examples are given for the case of $\text{SU}(2)\cong \mathbb{S}^{3}$ and vector fields/sub-Laplacian operators when operators in the classes $\mathscr{S}_{0,0}^{m}$ and $\mathscr{S}_{\frac{1}{2},0}^{m}$ naturally appear, and where conditions $\unicode[STIX]{x1D70C}>\unicode[STIX]{x1D6FF}$ and $\unicode[STIX]{x1D70C}>1-\unicode[STIX]{x1D6FF}$ fail, respectively.
An iteration technique for characterizing boundedness of certain types of multilinear operators is presented, reducing the problem to a corresponding linear-operator case. The method gives a simple proof of a characterization of validity of the weighted bilinear Hardy inequality
for all non-negative f, g on (a, b), for 1 < p1, p2, q < ∞. More equivalent characterizing conditions are presented.
The same technique is applied to various further problems, in particular those involving multilinear integral operators of Hardy type.
We are concerned with the multiplicity of solutions to the system driven by a fractional operator with homogeneous Dirichlet boundary conditions. Namely, using fibering maps and the Nehari manifold, we obtain multiple solutions to the following fractional elliptic system:
where Ω is a smooth bounded set in ℝn, n > 2s, with s ∈ (0, 1); (–Δ)s is the fractional Laplace operator;, λ, μ > 0 are two parameters; the exponent n/(n – 2s) ⩽ q < 2; α > 1, β > 1 satisfy is the fractional critical Sobolev exponent.
We study two-weight norm inequalities for a vector-valued operator from a weighted $L^{p}(\unicode[STIX]{x1D70E})$-space to mixed norm $L_{l^{s}}^{q}(\unicode[STIX]{x1D707})$ spaces, $1<p<\infty$, $0<q<p$. We apply these results to the boundedness of Wolff’s potentials.
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
In this paper we consider the existence of a positive solution to boundary-value problems with non-local nonlinear boundary conditions, the archetypical example being −y″(t) = λf(t,y(t)), t ∈ (0, 1), y(0) = H(φ(y)), y(1) = 0. Here, H is a nonlinear function, λ > 0 is a parameter and φ is a linear functional that is realized as a Lebesgue—Stieltjes integral with signed measure. By requiring φ to decompose in a certain way, we show that this problem has at least one positive solution for each λ ∈ (0, λ0), for a number λ0 > 0 that is explicitly computable. We also give a separate result that holds for all λ > 0.
Mixed norm inequalities for directional operators are closely related to the boundedness problems of several important operators in harmonic analysis. In this paper we prove weighted inequalities for some one-dimensional one-sided maximal functions. Then by applying these results, we establish mixed norm inequalities for directional maximal operators which are defined from these one-dimensional maximal functions. We also estimate the constants in these inequalities.
We show how to derive the uniqueness of graded or ordinary traces on some algebras of log-polyhomogeneous pseudodifferential operators from the uniqueness of their restriction to classical pseudodifferential ones.
We discuss here the boundedness of the fractional integral operator Iα and its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness of Iα, we employ the boundedness of the so-called maximal fractional integral operator Ia,κ*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.
Inspired by a statement of W. Luh asserting the existence of entire functions having together with all their derivatives and antiderivatives some kind of additive universality or multiplicative universality on certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we introduce in this paper the new concept of U-operators, which are defined on the space of entire functions. Concrete examples, including differential and antidifferential operators, composition, multiplication and shift operators, are studied. A result due to Luh, Martirosian and Müller about the existence of universal entire functions with gap power series is also strengthened.
The purpose of this paper is to provide a detailed treatment of the behaviour of essential spectra of closed densely defined linear operators subjected to additive perturbations not necessarily belonging to any ideal of the algebra of bounded linear operators. If A denotes a closed densely defined linear operator on a Banach space X, our approach consists principally in considering the class of A-closable operators which, regarded as operators in ℒ(XA, X) (where XA denotes the domain of A equipped with the graph norm), are contained in the set of A-Fredholm perturbations (see Definition 1.2). Our results are used to describe the essential spectra of singular neutron transport equations in bounded geometries.
Using the comparsion results for positive compact operators by Aliprantis and Burkinshow, Mokhtar Kharroubi investigated cimpactness properties of positive semigroups on Banach latttices. The aim of this paper is to study these properties in general Banach spaces (without positivity). Our results generalize a part fo those obtained by Mokhtar-Kharroubi to general Banach spaces context. More specifically, we derive conditions which ensure the compactness of the remainder term Rn(t) for some inteter n. The improvement here is that it can applied directly to the neutron transport equation for a wide class of collision operators.