We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New bounds are found for the reliability of consecutive-k-out-of-n:F systems with equal component failure probabilities. The expressions involved are simple, thus allowing a direct use in the derivation of theoretical properties.
These bounds can also be employed in numerical computations when the value of n or k is so large that the exact calculation of the reliability is not achievable. Comparisons show that the approximation errors exhibited by these new formulas are lower than those of other widely used bounds.
Extending the cascade model for food webs, we introduce a cyclic cascade model which is a random generation model of cyclic dominance relations. Put n species as n points Q1,Q2,…, Qn on a circle. If the counterclockwise way from Qi to Qj on the circle is shorter than the clockwise way, we say Qi dominates Qj. Consider a tournament whose dominance relations are generated from the points on a circle by this rule. We show that when we take n mutually independently distributed points on the circle, the probability of getting a regular tournament of order 2r+1 as the largest regular tournament is equal to (n/(2r+1))/2n-1. This probability distribution is for the number of existing species after a sufficiently long period, assuming a Lotka-Volterra cyclic cascade model.
In a cubic multigraph certain restrictions on the paths are made to define what is called a railway. On the tracks in the railway (edges in the multigraph) an equivalence relation is defined. The number of equivalence classes induced by this relation is investigated for a random railway achieved from a random cubic multigraph, and the asymptotic distribution of this number is derived as the number of vertices tends to infinity.
We approach sphere of influence graphs (SIGs) from a probabilistic perspective. Ordinary SIGs were first introduced by Toussaint as a type of proximity graph for use in pattern recognition, computer vision and other low-level vision tasks. A random sphere of influence graph (RSIG) is constructed as follows. Consider n points uniformly and independently distributed within the unit square in d dimensions. Around each point,Xi, draw an open ball (‘sphere of influence’) with radius equal to the distance to Xi's nearest neighbour. Finally, draw an edge between two points if their spheres of influence intersect. Asymptotically exact values for the expected number of edges in a RSIG are determined for all values of d; previously, just upper and lower bounds were known for this quantity. A modification of the Azuma-Hoeffding exponential inequality is employed to exhibit the sharp concentration of the number of edges around its expected value.
Expressions for the multi-dimensional densities of Brownian excursion local time are derived by two different methods: a direct method based on Kac's formula for Brownian functionals and an indirect one based on a limit theorem for Galton–Watson trees.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
We present a general recurrence model which provides a conceptual framework for well-known problems such as ascents, peaks, turning points, Bernstein's urn model, the Eggenberger–Pólya urn model and the hypergeometric distribution. Moreover, we show that the Frobenius-Harper technique, based on real roots of a generating function, can be applied to this general recurrence model (under simple conditions), and so a Berry–Esséen bound and local limit theorems can be found. This provides a simple and unified approach to asymptotic theory for diverse problems hitherto treated separately.
The study of the distribution of the distance between words in a random sequence of letters is interesting in view of application in genome sequence analysis. In this paper we give the exact distribution probability and cumulative distribution function of the distances between two successive occurrences of a given word and between the nth and the (n+m)th occurrences under three models of generation of the letters: i.i.d. with the same probability for each letter, i.i.d. with different probabilities and Markov process. The generating function and the first two moments are also given. The point of studying the distances instead of the counting process is that we get some knowledge not only about the frequency of a word but also about its longitudinal distribution in the sequence.
Generalizing the classical Banach matchbox problem, we consider the process of removing two types of ‘items’ from a ‘pile’ with selection probabilities for the type of the next item to be removed depending on the current numbers of remaining items, and thus changing sequentially. Under various conditions on the probability pn1,n2 that the next removal will take away an item of type I, given that n1 and n2 are the current numbers of items of the two types, we derive asymptotic formulas (as the initial pile size tends to infinity) for the probability that the items of type I are completely removed first and for the number of items left. In some special cases we also obtain explicit results.
We consider an allocation of n balls into N cells according to probabilities pi. Assuming that the balls are allocated successively, denote by φ(n,N) the number of such balls which go into an already occupied cell. If n = 2 the probability that two balls will occupy the same cell is equal to the so-called match probability MP = p21 + … + p2N. An upper estimate for the probability ℙ(φ(n,N) ≤ m) which depends only on n and MP is derived. Such inequalities are important for estimation of the reliability of DNA fingerprinting, a new method of crime investigation which is currently much debated.
This article continues an investigation begun in [2]. A random graph Gn(x) is constructed on independent random points U1, · ··, Un distributed uniformly on [0, 1]d, d ≧ 1, in which two distinct such points are joined by an edge if the l∞-distance between them is at most some prescribed value 0 < x < 1.
Almost-sure asymptotic results are obtained for the convergence/divergence of the minimum vertex degree of the random graph, as the number n of points becomes large and the edge distance x is allowed to vary with n. The largest nearest neighbor link dn, the smallest x such that Gn(x) has no vertices of degree zero, is shown to satisfySeries and sequence criteria on edge distances {xn} are provided which guarantee the random graph to be complete, a.s. These criteria imply a.s. limiting behavior of the diameter of the vertex set.
On independent random points U1,· ··,Un distributed uniformly on [0, 1]d, a random graph Gn(x) is constructed in which two distinct such points are joined by an edge if the l∞-distance between them is at most some prescribed value 0 ≦ x ≦ 1. Almost-sure asymptotic rates of convergence/divergence are obtained for the maximum vertex degree of the random graph and related quantities, including the clique number, chromatic number and independence number, as the number n of points becomes large and the edge distance x is allowed to vary with n. Series and sequence criteria on edge distances {xn} are provided which guarantee the random graph to be empty of edges, a.s.
The number of items of data which are irretrievable without additional effort after hashing can be greatly reduced if several hash tables are used simultaneously. Here we show that, in a multiple hashing scheme, this number has a distribution very close to Poisson. Thus choosing the number and sizes of the tables to minimize the expected number of irretrievable items is the right way to dimension a scheme.
The distribution of the number of items drawn in a secretary problem, with an order s selection role and a success if any of the best s items is selected, is obtained by a probabilistic argument. Moments and asymptotics readily follow.
In this paper conditions for the convergence of a class of simulated annealing algorithms for continuous global optimization are given. The previous literature about the subject gives results for the convergence of algorithms in which the next candidate point is generated according to a probability distribution whose support is the whole feasible set. A class of possible cooling schedules has been introduced in order to remove this restriction.
Given a finite collection of strings of letters from a fixed alphabet, it is of interest, in the contexts of data compression and DNA sequencing, to find the length of the shortest string which contains each of the given strings as a consecutive substring. In order to analyze the average behavior of the optimal superstring length, substrings of specified lengths are considered with the letters selected independently at random. An asymptotic expression is obtained for the savings from compression, i.e. the difference between the uncompressed (concatenated) length and the optimal superstring length.
In phylogenetic analysis it is useful to study the distribution of the parsimony length of a tree under the null model, by which the leaves are independently assigned letters according to prescribed probabilities. Except in one special case, this distribution is difficult to describe exactly. Here we analyze this distribution by providing a recursive and readily computable description, establishing large deviation bounds for the parsimony length of a fixed tree on a single site and for the minimum length (maximum parsimony) tree over several sites. We also show that, under very general conditions, the former distribution converges asymptotically to the normal, thereby settling a recent conjecture. Furthermore, we show how the mean and variance of this distribution can be efficiently calculated. The proof of normality requires a number of new and recent results, as the parsimony length is not directly expressible as a sum of independent random variables, and so normality does not follow immediately from a standard central limit theorem.
The Stein–Chen method for Poisson approximation is adapted to the setting of the geometric distribution. This yields a convenient method for assessing the accuracy of the geometric approximation to the distribution of the number of failures preceding the first success in dependent trials. The results are applied to approximating waiting time distributions for patterns in coin tossing, and to approximating the distribution of the time when a stationary Markov chain first visits a rare set of states. The error bounds obtained are sharper than those obtainable using related Poisson approximations.
A generalization of the Bernoulli–Laplace diffusion model is proposed. We consider the case where the number of balls exchanged is greater than one. We show that the stationary distribution is the same as in the classical scheme and we give the mean and the variance of the process. In a second stage, we study the asymptotic approximation based on the diffusion process. A solution of transition density is given using Legendre polynomials.
The paper is first concerned with a comparison of the partial sums associated with two sequences of n exchangeable Bernoulli random variables. It then considers a situation where such partial sums are obtained through an iterative procedure of branching type stopped at the first-passage time in a linearly decreasing upper barrier. These comparison results are illustrated with applications to certain urn models, sampling schemes and epidemic processes. A key tool is a non-standard hierarchical class of stochastic orderings between discrete random variables valued in {0, 1,· ··, n}.