We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the long-term behaviour of a random walker embedded in a growing sequence of graphs. We define a (generally non-Markovian) real-valued stochastic process, called the knowledge process, that represents the ratio between the number of vertices already visited by the walker and the current size of the graph. We mainly focus on the case where the underlying graph sequence is the growing sequence of complete graphs.
We consider the generalization of the Pólya urn scheme with possibly infinitely many colors, as introduced in [37], [4], [5], and [6]. For countably many colors, we prove almost sure convergence of the urn configuration under the uniform ergodicity assumption on the associated Markov chain. The proof uses a stochastic coupling of the sequence of chosen colors with a branching Markov chain on a weighted random recursive tree as described in [6], [31], and [26]. Using this coupling we estimate the covariance between any two selected colors. In particular, we re-prove the limit theorem for the classical urn models with finitely many colors.
We introduce a class of non-uniform random recursive trees grown with an attachment preference for young age. Via the Chen–Stein method of Poisson approximation, we find that the outdegree of a node is characterized in the limit by ‘perturbed’ Poisson laws, and the perturbation diminishes as the node index increases. As the perturbation is attenuated, a pure Poisson limit ultimately emerges in later phases. Moreover, we derive asymptotics for the proportion of leaves and show that the limiting fraction is less than one half. Finally, we study the insertion depth in a random tree in this class. For the insertion depth, we find the exact probability distribution, involving Stirling numbers, and consequently we find the exact and asymptotic mean and variance. Under appropriate normalization, we derive a concentration law and a limiting normal distribution. Some of these results contrast with their counterparts in the uniform attachment model, and some are similar.
In this paper, we consider functional limit theorems for Poisson cluster processes. We first present a maximal inequality for Poisson cluster processes. Then we establish a functional central limit theorem under the second moment and a functional moderate deviation principle under the Cramér condition for Poisson cluster processes. We apply these results to obtain a functional moderate deviation principle for linear Hawkes processes.
Suppose k balls are dropped into n boxes independently with uniform probability, where n, k are large with ratio approximately equal to some positive real
$\lambda$
. The maximum box count has a counterintuitive behavior: first of all, with high probability it takes at most two values
$m_n$
or
$m_n+1$
, where
$m_n$
is roughly
$\frac{\ln n}{\ln \ln n}$
. Moreover, it oscillates between these two values with an unusual periodicity. In order to prove this statement and various generalizations, it is first shown that for
$X_1,\ldots,X_n$
independent and identically distributed discrete random variables with common distribution F, under mild conditions, the limiting distribution of their maximum oscillates in three possible families, depending on the tail of the distribution. The result stated at the beginning follows from the ensemble equivalence for the order statistics in various allocations problems, obtained via conditioning limit theory. Results about the number of ties for the maximum, as well as applications, are also provided.
In this paper we first use the distribution of the number of records to demonstrate that the right tail probabilities of counts of rare events are generally better approximated by the right tail probabilities of a Poisson distribution than those of the normal distribution. We then show that the moderate deviations in Poisson approximation generally require an adjustment and, with suitable adjustment, we establish better error estimates of the moderate deviations in Poisson approximation than those in [18]. Our estimates contain no unspecified constants and are easy to apply. We illustrate the use of the theorems via six applications: Poisson-binomial distribution, the matching problem, the occupancy problem, the birthday problem, random graphs, and 2-runs. The paper complements the works [16], [8], and [18].
We investigate the Hawkes processes on the positive real line exhibiting both self-excitation and inhibition. Each point of such a point process impacts its future intensity by the addition of a signed reproduction function. The case of a nonnegative reproduction function corresponds to self-excitation, and has been widely investigated in the literature. In particular, there exists a cluster representation of the Hawkes process which allows one to apply known results for Galton–Watson trees. We use renewal techniques to establish limit theorems for Hawkes processes that have reproduction functions which are signed and have bounded support. Notably, we prove exponential concentration inequalities, extending results of Reynaud-Bouret and Roy (2006) previously proven for nonnegative reproduction functions using a cluster representation no longer valid in our case. Importantly, we establish the existence of exponential moments for renewal times of M/G/$\infty$ queues which appear naturally in our problem. These results possess interest independent of the original problem.
We establish a fundamental property of bivariate Pareto records for independent observations uniformly distributed in the unit square. We prove that the asymptotic conditional distribution of the number of records broken by an observation given that the observation sets a record is Geometric with parameter 1/2.
A new approach to prove weak convergence of random polytopes on the space of compact convex sets is presented. This is used to show that the profile of the rescaled Schläfli random cone of a random conical tessellation, generated by n independent and uniformly distributed random linear hyperplanes in
$\mathbb {R}^{d+1}$
, weakly converges to the typical cell of a stationary and isotropic Poisson hyperplane tessellation in
$\mathbb {R}^d$
, as
$n\to \infty $
.
We study the limit behaviour of a class of random walk models taking values in the standard d-dimensional (
$d\ge 1$
) simplex. From an interior point z, the process chooses one of the
$d+1$
vertices of the simplex, with probabilities depending on z, and then the particle randomly jumps to a new location z′ on the segment connecting z to the chosen vertex. In some special cases, using properties of the Beta distribution, we prove that the limiting distributions of the Markov chain are Dirichlet. We also consider a related history-dependent random walk model in [0, 1] based on an urn-type scheme. We show that this random walk converges in distribution to an arcsine random variable.
We investigate the probability that an insurance portfolio gets ruined within a finite time period under the assumption that the r largest claims are (partly) reinsured. We show that for regularly varying claim sizes the probability of ruin after reinsurance is also regularly varying in terms of the initial capital, and derive an explicit asymptotic expression for the latter. We establish this result by leveraging recent developments on sample-path large deviations for heavy tails. Our results allow, on the asymptotic level, for an explicit comparison between two well-known large-claim reinsurance contracts, namely LCR and ECOMOR. Finally, we assess the accuracy of the resulting approximations using state-of-the-art rare event simulation techniques.
The limit behavior of partial sums for short range dependent stationary sequences (with summable autocovariances) and for long range dependent sequences (with autocovariances summing up to infinity) differs in various aspects. We prove central limit theorems for partial sums of subordinated linear processes of arbitrary power rank which are at the border of short and long range dependence.
We consider planar first-passage percolation and show that the time constant can be bounded by multiples of the first and second tertiles of the weight distribution. As a consequence, we obtain a counter-example to a problem proposed by Alm and Deijfen (2015).
We observe a realization of a stationary weighted Voronoi tessellation of the d-dimensional Euclidean space within a bounded observation window. Given a geometric characteristic of the typical cell, we use the minus-sampling technique to construct an unbiased estimator of the average value of this geometric characteristic. Under mild conditions on the weights of the cells, we establish variance asymptotics and the asymptotic normality of the unbiased estimator as the observation window tends to the whole space. Moreover, weak consistency is shown for this estimator.
We extend the existing small-time asymptotics for implied volatilities under the Heston stochastic volatility model to the multifactor volatility Heston model, which is also known as the Wishart multidimensional stochastic volatility model (WMSV). More explicitly, we show that the approaches taken in Forde and Jacquier (2009) and Forde, Jacqiuer and Lee (2012) are applicable to the WMSV model under mild conditions, and obtain explicit small-time expansions of implied volatilities.
Both sequential Monte Carlo (SMC) methods (a.k.a. ‘particle filters’) and sequential Markov chain Monte Carlo (sequential MCMC) methods constitute classes of algorithms which can be used to approximate expectations with respect to (a sequence of) probability distributions and their normalising constants. While SMC methods sample particles conditionally independently at each time step, sequential MCMC methods sample particles according to a Markov chain Monte Carlo (MCMC) kernel. Introduced over twenty years ago in [6], sequential MCMC methods have attracted renewed interest recently as they empirically outperform SMC methods in some applications. We establish an
$\mathbb{L}_r$
-inequality (which implies a strong law of large numbers) and a central limit theorem for sequential MCMC methods and provide conditions under which errors can be controlled uniformly in time. In the context of state-space models, we also provide conditions under which sequential MCMC methods can indeed outperform standard SMC methods in terms of asymptotic variance of the corresponding Monte Carlo estimators.
For a continuous-time random walk X = {Xt, t ⩾ 0} (in general non-Markov), we study the asymptotic behaviour, as t → ∞, of the normalized additive functional $c_t\int _0^{t} f(X_s)\,{\rm d}s$, t⩾ 0. Similarly to the Markov situation, assuming that the distribution of jumps of X belongs to the domain of attraction to α-stable law with α > 1, we establish the convergence to the local time at zero of an α-stable Lévy motion. We further study a situation where X is delayed by a random environment given by the Poisson shot-noise potential: $\Lambda (x,\gamma )= {\rm e}^{-\sum _{y\in \gamma } \phi (x-y)},$ where $\phi \colon \mathbb R\to [0,\infty )$ is a bounded function decaying sufficiently fast, and γ is a homogeneous Poisson point process, independent of X. We find that in this case the weak limit has both ‘quenched’ component depending on Λ, and a component, where Λ is ‘averaged’.
The sequence of prime numbers p for which a variety over ℚ has no p-adic point plays a fundamental role in arithmetic geometry. This sequence is deterministic, however, we prove that if we choose a typical variety from a family then the sequence has random behaviour. We furthermore prove that this behaviour is modelled by a random walk in Brownian motion. This has several consequences, one of them being the description of the finer properties of the distribution of the primes in this sequence via the Feynman–Kac formula.
This work is devoted to a vast extension of Sanov’s theorem, in Laplace principle form, based on alternatives to the classical convex dual pair of relative entropy and cumulant generating functional. The abstract results give rise to a number of probabilistic limit theorems and asymptotics. For instance, widely applicable non-exponential large deviation upper bounds are derived for empirical distributions and averages of independent and identically distributed samples under minimal integrability assumptions, notably accommodating heavy-tailed distributions. Other interesting manifestations of the abstract results include new results on the rate of convergence of empirical measures in Wasserstein distance, uniform large deviation bounds, and variational problems involving optimal transport costs, as well as an application to error estimates for approximate solutions of stochastic optimization problems. The proofs build on the Dupuis–Ellis weak convergence approach to large deviations as well as the duality theory for convex risk measures.
We establish an invariance principle and a large deviation principle for a biased random walk
${\text{RW}}_\lambda$
with
$\lambda\in [0,1)$
on
$\mathbb{Z}^d$
. The scaling limit in the invariance principle is not a d-dimensional Brownian motion. For the large deviation principle, its rate function is different from that of a drifted random walk, as may be expected, though the reflected biased random walk evolves like the drifted random walk in the interior of the first quadrant and almost surely visits coordinate planes finitely many times.