We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work we analyse bucket increasing tree families. We introduce two simple stochastic growth processes, generating random bucket increasing trees of size n, complementing the earlier result of Mahmoud and Smythe (1995, Theoret. Comput. Sci.144 221–249.) for bucket recursive trees. On the combinatorial side, we define multilabelled generalisations of the tree families d-ary increasing trees and generalised plane-oriented recursive trees. Additionally, we introduce a clustering process for ordinary increasing trees and relate it to bucket increasing trees. We discuss in detail the bucket size two and present a bijection between such bucket increasing tree families and certain families of graphs called increasing diamonds, providing an explanation for phenomena observed by Bodini et al. (2016, Lect. Notes Comput. Sci.9644 207–219.). Concerning structural properties of bucket increasing trees, we analyse the tree parameter
$K_n$
. It counts the initial bucket size of the node containing label n in a tree of size n and is closely related to the distribution of node types. Additionally, we analyse the parameters descendants of label j and degree of the bucket containing label j, providing distributional decompositions, complementing and extending earlier results (Kuba and Panholzer (2010), Theoret. Comput. Sci.411(34–36) 3255–3273.).
By now there is a solid theory for Polya urns. Finding the covariances is somewhat laborious. While these papers are “structural,” our purpose here is “computational.” We propose a practicable method for building the asymptotic covariance matrix in tenable balanced urn schemes, whereupon the asymptotic covariance matrix is obtained by solving a linear system of equations. We demonstrate the use of the method in growing tenable balanced irreducible schemes with a small index and in critical urns. In the critical case, the solution to the linear system of equations is explicit in terms of an eigenvector of the scheme.
In this paper we consider the one-dimensional, biased, randomly trapped random walk with infinite-variance trapping times. We prove sufficient conditions for the suitably scaled walk to converge to a transformation of a stable Lévy process. As our main motivation, we apply subsequential versions of our results to biased walks on subcritical Galton–Watson trees conditioned to survive. This confirms the correct order of the fluctuations of the walk around its speed for values of the bias that yield a non-Gaussian regime.
This paper considers logarithmic asymptotics of tails of randomly stopped sums. The stopping is assumed to be independent of the underlying random walk. First, finiteness of ordinary moments is revisited. Then the study is expanded to more general asymptotic analysis. Results are applicable to a large class of heavy-tailed random variables. The main result enables one to identify if the asymptotic behaviour of a stopped sum is dominated by its increments or the stopping variable. As a consequence, new sufficient conditions for the moment determinacy of compounded sums are obtained.
Detailed balance of a chemical reaction network can be defined in several different ways. Here we investigate the relationship among four types of detailed balance conditions: deterministic, stochastic, local, and zero-order local detailed balance. We show that the four types of detailed balance are equivalent when different reactions lead to different species changes and are not equivalent when some different reactions lead to the same species change. Under the condition of local detailed balance, we further show that the system has a global potential defined over the whole space, which plays a central role in the large deviation theory and the Freidlin–Wentzell-type metastability theory of chemical reaction networks. Finally, we provide a new sufficient condition for stochastic detailed balance, which is applied to construct a class of high-dimensional chemical reaction networks that both satisfies stochastic detailed balance and displays multistability.
We introduce a definition of long range dependence of random processes and fields on an (unbounded) index space
$T\subseteq \mathbb{R}^d$
in terms of integrability of the covariance of indicators that a random function exceeds any given level. This definition is specifically designed to cover the case of random functions with infinite variance. We show the value of this new definition and its connection to limit theorems via some examples including subordinated Gaussian as well as random volatility fields and time series.
We study, under mild conditions, the weak approximation constructed from a standard Poisson process for a class of Gaussian processes, and establish its sample path moderate deviations. The techniques consist of a good asymptotic exponential approximation in moderate deviations, the Besov–Lèvy modulus embedding, and an exponential martingale technique. Moreover, our results are applied to the weak approximations associated with the moving average of Brownian motion, fractional Brownian motion, and an Ornstein–Uhlenbeck process.
Coupling-from-the-past (CFTP) methods have been used to generate perfect samples from finite Gibbs hard-sphere models, an important class of spatial point processes consisting of a set of spheres with the centers on a bounded region that are distributed as a homogeneous Poisson point process (PPP) conditioned so that spheres do not overlap with each other. We propose an alternative importance-sampling-based rejection methodology for the perfect sampling of these models. We analyze the asymptotic expected running time complexity of the proposed method when the intensity of the reference PPP increases to infinity while the (expected) sphere radius decreases to zero at varying rates. We further compare the performance of the proposed method analytically and numerically with that of a naive rejection algorithm and of popular dominated CFTP algorithms. Our analysis relies upon identifying large deviations decay rates of the non-overlapping probability of spheres whose centers are distributed as a homogeneous PPP.
In the classical simple random walk the steps are independent, that is, the walker has no memory. In contrast, in the elephant random walk, which was introduced by Schütz and Trimper [19] in 2004, the next step always depends on the whole path so far. Our main aim is to prove analogous results when the elephant has only a restricted memory, for example remembering only the most remote step(s), the most recent step(s), or both. We also extend the models to cover more general step sizes.
In this paper, we investigate the distribution of the maximum of partial sums of families of $m$-periodic complex-valued functions satisfying certain conditions. We obtain precise uniform estimates for the distribution function of this maximum in a near-optimal range. Our results apply to partial sums of Kloosterman sums and other families of $\ell$-adic trace functions, and are as strong as those obtained by Bober, Goldmakher, Granville and Koukoulopoulos for character sums. In particular, we improve on the recent work of the third author for Birch sums. However, unlike character sums, we are able to construct families of $m$-periodic complex-valued functions which satisfy our conditions, but for which the Pólya–Vinogradov inequality is sharp.
In this paper we study a large system of N servers, each with capacity to process at most C simultaneous jobs; an incoming job is routed to a server if it has the lowest occupancy amongst d (out of N) randomly selected servers. A job that is routed to a server with no vacancy is assumed to be blocked and lost. Such randomized policies are referred to JSQ(d) (Join the Shortest Queue out of d) policies. Under the assumption that jobs arrive according to a Poisson process with rate
$N\lambda^{(N)}$
where
$\lambda^{(N)}=\sigma-\frac{\beta}{\sqrt{N}\,}$
,
$\sigma\in\mathbb{R}_+$
and
$\beta\in\mathbb{R}$
, we establish functional central limit theorems for the fluctuation process in both the transient and stationary regimes when service time distributions are exponential. In particular, we show that the limit is an Ornstein–Uhlenbeck process whose mean and variance depend on the mean field of the considered model. Using this, we obtain approximations to the blocking probabilities for large N, where we can precisely estimate the accuracy of first-order approximations.
Consider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob.33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.
We consider stochastic differential equations of the form $dX_t = |f(X_t)|/t^{\gamma} dt+1/t^{\gamma} dB_t$, where f(x) behaves comparably to $|x|^k$ in a neighborhood of the origin, for $k\in [1,\infty)$. We show that there exists a threshold value $ \,{:}\,{\raise-1.5pt{=}}\, \tilde{\gamma}$ for $\gamma$, depending on k, such that if $\gamma \in (1/2, \tilde{\gamma})$, then $\mathbb{P}(X_t\rightarrow 0) = 0$, and for the rest of the permissible values of $\gamma$, $\mathbb{P}(X_t\rightarrow 0)>0$. These results extend to discrete processes that satisfy $X_{n+1}-X_n = f(X_n)/n^\gamma +Y_n/n^\gamma$. Here, $Y_{n+1}$ are martingale differences that are almost surely bounded.
This result shows that for a function F whose second derivative at degenerate saddle points is of polynomial order, it is always possible to escape saddle points via the iteration $X_{n+1}-X_n =F'(X_n)/n^\gamma +Y_n/n^\gamma$ for a suitable choice of $\gamma$.
Our aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.
We study the transient and limiting behavior of a queue with a Pólya arrival process. The Pólya process is interesting because it exhibits path-dependent behavior, e.g. it satisfies a non-ergodic law of large numbers: the average number of arrivals over time [0, t] converges almost surely to a nondegenerate limit as $t \rightarrow \infty$. We establish a heavy-traffic diffusion limit for the $\sum_{i=1}^{n} P_i/GI/1$ queue, with arrivals occurring exogenously according to the superposition of n independent and identically distributed Pólya point processes. That limit yields a tractable approximation for the transient queue-length distribution, because the limiting net input process is a Gaussian Markov process with stationary increments. We also provide insight into the long-run performance of queues with path-dependent arrival processes. We show how Little’s law can be stated in this context, and we provide conditions under which there is stability for a queue with a Pólya arrival process.
Rough volatility is a well-established statistical stylized fact of financial assets. This property has led to the design and analysis of various new rough stochastic volatility models. However, most of these developments have been carried out in the mono-asset case. In this work, we show that some specific multivariate rough volatility models arise naturally from microstructural properties of the joint dynamics of asset prices. To do so, we use Hawkes processes to build microscopic models that accurately reproduce high-frequency cross-asset interactions and investigate their long-term scaling limits. We emphasize the relevance of our approach by providing insights on the role of microscopic features such as momentum and mean-reversion in the multidimensional price formation process. In particular, we recover classical properties of high-dimensional stock correlation matrices.
We give a necessary and sufficient condition on
$\beta $
of the natural extension of a
$\beta $
-shift, so that any equilibrium measure for a function of bounded total oscillations is a weak Gibbs measure.
Let $t:{\mathbb F_p} \to C$ be a complex valued function on ${\mathbb F_p}$. A classical problem in analytic number theory is bounding the maximum
$$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$
of the absolute value of the incomplete sums $(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $. In this very general context one of the most important results is the Pólya–Vinogradov bound
where $\hat t:{\mathbb F_p} \to \mathbb C$ is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any $\varepsilon > 0$ there exists a large subset of $a \in \mathbb F_p^ \times $ such that for $${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$ we have
This is the first of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this first paper, we prove rough estimates for the Green function. Along the way, we introduce the notion of relative automaticity which will be useful in both papers and we show that relatively hyperbolic groups are relatively automatic. We also define the notion of spectral positive recurrence for random walks on relatively hyperbolic groups. We then use our estimates for the Green function to prove that
$p_n\asymp R^{-n}n^{-3/2}$
for spectrally positive-recurrent random walks, where
$p_n$
is the probability of going back to the origin at time n and where R is the inverse of the spectral radius of the random walk.