To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Stein’s method is used to study discrete representations of multidimensional distributions that arise as approximations of states of quantum harmonic oscillators. These representations model how quantum effects result from the interaction of finitely many classical ‘worlds’, with the role of sample size played by the number of worlds. Each approximation arises as the ground state of a Hamiltonian involving a particular interworld potential function. Our approach, framed in terms of spherical coordinates, provides the rate of convergence of the discrete approximation to the ground state in terms of Wasserstein distance. Applying a novel Stein’s method technique to the radial component of the ground state solution, the fastest rate of convergence to the ground state is found to occur in three dimensions.
Risk measurements are clearly central to risk management, in particular for banks, (re)insurance companies, and investment funds. The question of the appropriateness of risk measures for evaluating the risk of financial institutions has been heavily debated, especially after the financial crisis of 2008/2009. Another concern for financial institutions is the pro-cyclicality of risk measurements. In this paper, we extend existing work on the pro-cyclicality of the Value-at-Risk to its main competitors, Expected Shortfall, and Expectile: We compare the pro-cyclicality of historical quantile-based risk estimation, taking into account the market state. To characterise the latter, we propose various estimators of the realised volatility. Considering the family of augmented GARCH(p, q) processes (containing well-known GARCH models and iid models, as special cases), we prove that the strength of pro-cyclicality depends on the three factors: the choice of risk measure and its estimators, the realised volatility estimator and the model considered, but, no matter the choices, the pro-cyclicality is always present. We complement this theoretical analysis by performing simulation studies in the iid case and developing a case study on real data.
We study (asymmetric) $U$-statistics based on a stationary sequence of $m$-dependent variables; moreover, we consider constrained $U$-statistics, where the defining multiple sum only includes terms satisfying some restrictions on the gaps between indices. Results include a law of large numbers and a central limit theorem, together with results on rate of convergence, moment convergence, functional convergence, and a renewal theory version.
Special attention is paid to degenerate cases where, after the standard normalization, the asymptotic variance vanishes; in these cases non-normal limits occur after a different normalization.
The results are motivated by applications to pattern matching in random strings and permutations. We obtain both new results and new proofs of old results.
Let $({\mathbb X}, T)$ be a subshift of finite type equipped with the Gibbs measure $\nu $ and let f be a real-valued Hölder continuous function on ${\mathbb X}$ such that $\nu (f) = 0$. Consider the Birkhoff sums $S_n f = \sum _{k=0}^{n-1} f \circ T^{k}$, $n\geqslant 1$. For any $t \in {\mathbb R}$, denote by $\tau _t^f$ the first time when the sum $t+ S_n f$ leaves the positive half-line for some $n\geqslant 1$. By analogy with the case of random walks with independent and identically distributed increments, we study the asymptotic as $ n\to \infty $ of the probabilities $ \nu (x\in {\mathbb X}: \tau _t^f(x)>n) $ and $ {\nu (x\in {\mathbb X}: \tau _t^f(x)=n) }$. We also establish integral and local-type limit theorems for the sum $t+ S_n f(x)$ conditioned on the set $\{ x \in {\mathbb X}: \tau _t^f(x)>n \}.$
We are interested in a fragmentation process. We observe fragments frozen when their sizes are less than $\varepsilon$ ($\varepsilon>0$). It is known (Bertoin and Martínez, 2005) that the empirical measure of these fragments converges in law, under some renormalization. Hoffmann and Krell (2011) showed a bound for the rate of convergence. Here, we show a central limit theorem, under some assumptions. This gives us an exact rate of convergence.
This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function f, the time average $\frac{1}{t} \int_0^t f(X_s)ds$ converges in $\mathbb{L}^2$ towards a limiting distribution, starting from any initial distribution for the process $(X_t)_{t \geq 0}$. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result is then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.
Erdős considered the second moment of the gap-counting function of prime divisors in 1946 and proved an upper bound that is not of the right order of magnitude. We prove asymptotics for all moments. Furthermore, we prove a generalisation stating that the gaps between primes p for which there is no $\mathbb{Q}_p$-point on a random variety are Poisson distributed.
This paper addresses the asymptotic analysis of sojourn functionals of spatiotemporal Gaussian random fields with long-range dependence (LRD) in time, also known as long memory. Specifically, reduction theorems are derived for local functionals of nonlinear transformation of such fields, with Hermite rank $m\geq 1,$ under general covariance structures. These results are proven to hold, in particular, for a family of nonseparable covariance structures belonging to the Gneiting class. For $m=2,$ under separability of the spatiotemporal covariance function in space and time, the properly normalized Minkowski functional, involving the modulus of a Gaussian random field, converges in distribution to the Rosenblatt-type limiting distribution for a suitable range of values of the long-memory parameter.
In this study, we consider a class of multiple-drawing opposite-reinforcing urns with time-dependent replacement rules. The class has the symmetric property of a Friedman-type urn. We divide the class into a small-increment regime and a large-increment regime. For small-increment schemes, we prove almost-sure convergence and a central limit theorem for the proportion of white balls by stochastic approximation. For large-increment schemes, by assuming the affinity condition, we show almost-sure convergence of the proportion of white balls by martingale theory and present a way to identify the limit distribution of the proportion of white balls.
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the $\varepsilon$-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the $\varepsilon$-blanket times of the random walks if the $\varepsilon$-blanket time of the limiting diffusion is continuous at $\varepsilon$ with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random graph in the critical window. We highlight that proving continuity of the $\varepsilon$-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
One way to model telecommunication networks are static Boolean models. However, dynamics such as node mobility have a significant impact on the performance evaluation of such networks. Consider a Boolean model in $\mathbb {R}^d$ and a random direction movement scheme. Given a fixed time horizon $T>0$, we model these movements via cylinders in $\mathbb {R}^d \times [0,T]$. In this work, we derive central limit theorems for functionals of the union of these cylinders. The volume and the number of isolated cylinders and the Euler characteristic of the random set are considered and give an answer to the achievable throughput, the availability of nodes, and the topological structure of the network.
In the classical framework, a random walk on a group is a Markov chain with independent and identically distributed increments. In some sense, random walks are time and space homogeneous. This paper is devoted to a class of inhomogeneous random walks on $\mathbb{Z}^d$ termed ‘Markov additive processes’ (also known as Markov random walks, random walks with internal degrees of freedom, or semi-Markov processes). In this model, the increments of the walk are still independent but their distributions are dictated by a Markov chain, termed the internal Markov chain. While this model is largely studied in the literature, most of the results involve internal Markov chains whose operator is quasi-compact. This paper extends two results for more general internal operators: a local limit theorem and a sufficient criterion for their transience. These results are thereafter applied to a new family of models of drifted random walks on the lattice $\mathbb{Z}^d$.
The problem of optimally scaling the proposal distribution in a Markov chain Monte Carlo algorithm is critical to the quality of the generated samples. Much work has gone into obtaining such results for various Metropolis–Hastings (MH) algorithms. Recently, acceptance probabilities other than MH are being employed in problems with intractable target distributions. There are few resources available on tuning the Gaussian proposal distributions for this situation. We obtain optimal scaling results for a general class of acceptance functions, which includes Barker’s and lazy MH. In particular, optimal values for Barker’s algorithm are derived and found to be significantly different from that obtained for the MH algorithm. Our theoretical conclusions are supported by numerical simulations indicating that when the optimal proposal variance is unknown, tuning to the optimal acceptance probability remains an effective strategy.
We consider the random splitting and aggregating of Hawkes processes. We present the random splitting schemes using the direct approach for counting processes, as well as the immigration–birth branching representations of Hawkes processes. From the second scheme, it is shown that random split Hawkes processes are again Hawkes. We discuss functional central limit theorems (FCLTs) for the scaled split processes from the different schemes. On the other hand, aggregating multivariate Hawkes processes may not necessarily be Hawkes. We identify a necessary and sufficient condition for the aggregated process to be Hawkes. We prove an FCLT for a multivariate Hawkes process under a random splitting and then aggregating scheme (under certain conditions, transforming into a Hawkes process of a different dimension).
Given a graphon $W$ and a finite simple graph $H$, with vertex set $V(H)$, denote by $X_n(H, W)$ the number of copies of $H$ in a $W$-random graph on $n$ vertices. The asymptotic distribution of $X_n(H, W)$ was recently obtained by Hladký, Pelekis, and Šileikis [17] in the case where $H$ is a clique. In this paper, we extend this result to any fixed graph $H$. Towards this we introduce a notion of $H$-regularity of graphons and show that if the graphon $W$ is not $H$-regular, then $X_n(H, W)$ has Gaussian fluctuations with scaling $n^{|V(H)|-\frac{1}{2}}$. On the other hand, if $W$ is $H$-regular, then the fluctuations are of order $n^{|V(H)|-1}$ and the limiting distribution of $X_n(H, W)$ can have both Gaussian and non-Gaussian components, where the non-Gaussian component is a (possibly) infinite weighted sum of centred chi-squared random variables with the weights determined by the spectral properties of a graphon derived from $W$. Our proofs use the asymptotic theory of generalised $U$-statistics developed by Janson and Nowicki [22]. We also investigate the structure of $H$-regular graphons for which either the Gaussian or the non-Gaussian component of the limiting distribution (but not both) is degenerate. Interestingly, there are also $H$-regular graphons $W$ for which both the Gaussian or the non-Gaussian components are degenerate, that is, $X_n(H, W)$ has a degenerate limit even under the scaling $n^{|V(H)|-1}$. We give an example of this degeneracy with $H=K_{1, 3}$ (the 3-star) and also establish non-degeneracy in a few examples. This naturally leads to interesting open questions on higher order degeneracies.
Let $\mu $ be a probability measure on $\mathrm {GL}_d(\mathbb {R})$, and denote by $S_n:= g_n \cdots g_1$ the associated random matrix product, where $g_j$ are i.i.d. with law $\mu $. Under the assumptions that $\mu $ has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we prove a Berry–Esseen bound with the optimal rate $O(1/\sqrt n)$ for the coefficients of $S_n$, settling a long-standing question considered since the fundamental work of Guivarc’h and Raugi. The local limit theorem for the coefficients is also obtained, complementing a recent partial result of Grama, Quint and Xiao.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
We consider the problem of group testing (pooled testing), first introduced by Dorfman. For nonadaptive testing strategies, we refer to a nondefective item as “intruding” if it only appears in positive tests. Such items cause misclassification errors in the well-known COMP algorithm and can make other algorithms produce an error. It is therefore of interest to understand the distribution of the number of intruding items. We show that, under Bernoulli matrix designs, this distribution is well approximated in a variety of senses by a negative binomial distribution, allowing us to understand the performance of the two-stage conservative group testing algorithm of Aldridge.
Let X be a continuous-time strongly mixing or weakly dependent process and let T be a renewal process independent of X. We show general conditions under which the sampled process $(X_{T_i},T_i-T_{i-1})^{\top}$ is strongly mixing or weakly dependent. Moreover, we explicitly compute the strong mixing or weak dependence coefficients of the renewal sampled process and show that exponential or power decay of the coefficients of X is preserved (at least asymptotically). Our results imply that essentially all central limit theorems available in the literature for strongly mixing or weakly dependent processes can be applied when renewal sampled observations of the process X are at our disposal.
We introduce a notion of barycenter of a probability measure related to the symmetric mean of a collection of non-negative real numbers. Our definition is inspired by the work of Halász and Székely, who in 1976 proved a law of large numbers for symmetric means. We study the analytic properties of this Halász–Székely barycenter. We establish fundamental inequalities that relate the symmetric mean of a list of non-negative real numbers with the barycenter of the measure uniformly supported on these points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of a sequence of dynamical observations converge to the Halász–Székely barycenter of the corresponding distribution.