To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $\nu $. We consider a class of non-square-integrable observables $\phi $, mostly of form $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$, where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $\alpha \in (0,2)$. The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $\alpha $, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by $\nu $. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.
We establish the exponential nonuniform Berry–Esseen bound for the maximum likelihood estimator of unknown drift parameter in an ultraspherical Jacobi process using the change of measure method and precise asymptotic analysis techniques. As applications, the optimal uniform Berry–Esseen bound and optimal Cramér-type moderate deviation for the corresponding maximum likelihood estimator are obtained.
We prove that the local time of random walks conditioned to stay positive converges to the corresponding local time of three-dimensional Bessel processes by proper scaling. Our proof is based on Tanaka’s pathwise construction for conditioned random walks and the derivation of asymptotics for mixed moments of the local time.
We establish the asymptotic expansion in $\beta $ matrix models with a confining, off-critical potential in the regime where the support of the equilibrium measure is a finite union of segments. We first address the case where the filling fractions of these segments are fixed and show the existence of a $\frac {1}{N}$ expansion. We then study the asymptotics of the sum over the filling fractions to obtain the full asymptotic expansion for the initial problem in the multi-cut regime. In particular, we identify the fluctuations of the linear statistics and show that they are approximated in law by the sum of a Gaussian random variable and an independent Gaussian discrete random variable with oscillating center. Fluctuations of filling fractions are also described by an oscillating discrete Gaussian random variable. We apply our results to study the all-order small dispersion asymptotics of solutions of the Toda chain associated with the one Hermitian matrix model ($\beta = 2$) as well as orthogonal ($\beta = 1$) and skew-orthogonal ($\beta = 4$) polynomials outside the bulk.
We consider linear preferential attachment trees with additive fitness, where fitness is the random initial vertex attractiveness. We show that when the fitnesses are independent and identically distributed and have positive bounded support, the local weak limit can be constructed using a sequence of mixed Poisson point processes. We also provide a rate of convergence for the total variation distance between the r-neighbourhoods of a uniformly chosen vertex in the preferential attachment tree and the root vertex of the local weak limit. The proof uses a Pólya urn representation of the model, for which we give new estimates for the beta and product beta variables in its construction. As applications, we obtain limiting results and convergence rates for the degrees of the uniformly chosen vertex and its ancestors, where the latter are the vertices that are on the path between the uniformly chosen vertex and the initial vertex.
We consider Gaussian approximation in a variant of the classical Johnson–Mehl birth–growth model with random growth speed. Seeds appear randomly in $\mathbb{R}^d$ at random times and start growing instantaneously in all directions with a random speed. The locations, birth times, and growth speeds of the seeds are given by a Poisson process. Under suitable conditions on the random growth speed, the time distribution, and a weight function $h\;:\;\mathbb{R}^d \times [0,\infty) \to [0,\infty)$, we prove a Gaussian convergence of the sum of the weights at the exposed points, which are those seeds in the model that are not covered at the time of their birth. Such models have previously been considered, albeit with fixed growth speed. Moreover, using recent results on stabilization regions, we provide non-asymptotic bounds on the distance between the normalized sum of weights and a standard Gaussian random variable in the Wasserstein and Kolmogorov metrics.
The goal of this paper is to go further in the analysis of the behavior of the number of descents in a random permutation. Via two different approaches relying on a suitable martingale decomposition or on the Irwin–Hall distribution, we prove that the number of descents satisfies a sharp large-deviation principle. A very precise concentration inequality involving the rate function in the large-deviation principle is also provided.
We show that the measure of maximal entropy of every complex Hénon map is exponentially mixing of all orders for Hölder observables. As a consequence, the Central Limit Theorem holds for all Hölder observables.
We study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, $\mathbb{X}_t$ converges weakly. As a consequence, we obtain a limit theorem for the order statistics of $\mathbb{X}_t$.
We consider the minimum spanning tree problem on a weighted complete bipartite graph $K_{n_R, n_B}$ whose $n=n_R+n_B$ vertices are random, i.i.d. uniformly distributed points in the unit cube in $d$ dimensions and edge weights are the $p$-th power of their Euclidean distance, with $p\gt 0$. In the large $n$ limit with $n_R/n \to \alpha _R$ and $0\lt \alpha _R\lt 1$, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on $d$ only. Despite this difference, for $p\lt d$, we are able to prove that the total edge costs normalized by the rate $n^{1-p/d}$ converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.
Birth–death processes form a natural class where ideas and results on large deviations can be tested. We derive a large-deviation principle under an assumption that the rate of jump down (death) grows asymptotically linearly with the population size, while the rate of jump up (birth) grows sublinearly. We establish a large-deviation principle under various forms of scaling of the underlying process and the corresponding normalization of the logarithm of the large-deviation probabilities. The results show interesting features of dependence of the rate functional upon the parameters of the process and the forms of scaling and normalization.
Consider a well-shuffled deck of cards of n different types where each type occurs m times. In a complete feedback game, a player is asked to guess the top card from the deck. After each guess, the top card is revealed to the player and is removed from the deck. The total number of correct guesses in a complete feedback game has attracted significant interest in the past few decades. Under different regimes of m, n, the expected number of correct guesses, under the greedy (optimal) strategy, has been obtained by various authors, while there are not many results available about the fluctuations. In this paper we establish a central limit theorem with Berry–Esseen bounds when m is fixed and n is large. Our results extend to the case of decks where different types may have different multiplicity, under suitable assumptions.
This paper analyzes the training process of generative adversarial networks (GANs) via stochastic differential equations (SDEs). It first establishes SDE approximations for the training of GANs under stochastic gradient algorithms, with precise error bound analysis. It then describes the long-run behavior of GAN training via the invariant measures of its SDE approximations under proper conditions. This work builds a theoretical foundation for GAN training and provides analytical tools to study its evolution and stability.
In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $\unicode{x2124}$: in this model, the probability that the walk moves from a point of $\unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.
We consider an SIR (susceptible $\to$ infective $\to$ recovered) epidemic in a closed population of size n, in which infection spreads via mixing events, comprising individuals chosen uniformly at random from the population, which occur at the points of a Poisson process. This contrasts sharply with most epidemic models, in which infection is spread purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and an approximating branching process are constructed on a common probability space via embedded random walks. We show that under suitable conditions the process of infectives in the epidemic process converges almost surely to the branching process. This leads to a threshold theorem for the epidemic process, where a major outbreak is defined as one that infects at least $\log n$ individuals. We show further that there exists $\delta \gt 0$, depending on the model parameters, such that the probability that a major outbreak has size at least $\delta n$ tends to one as $n \to \infty$.
Given a connected graph $H$ which is not a star, we show that the number of copies of $H$ in a dense uniformly random regular graph is asymptotically Gaussian, which was not known even for $H$ being a triangle. This addresses a question of McKay from the 2010 International Congress of Mathematicians. In fact, we prove that the behavior of the variance of the number of copies of $H$ depends in a delicate manner on the occurrence and number of cycles of $3,4,5$ edges as well as paths of $3$ edges in $H$. More generally, we provide control of the asymptotic distribution of certain statistics of bounded degree which are invariant under vertex permutations, including moments of the spectrum of a random regular graph. Our techniques are based on combining complex-analytic methods due to McKay and Wormald used to enumerate regular graphs with the notion of graph factors developed by Janson in the context of studying subgraph counts in $\mathbb {G}(n,p)$.
Extreme value theory plays an important role in providing approximation results for the extremes of a sequence of independent random variables when their distribution is unknown. An important one is given by the generalised Pareto distribution $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold t, where s(t) is a suitable norming function. We study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback–Leibler divergence between the respective densities.
Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment $\{Z_n\}$ whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points $\{(\tau_j, \nu_j)\}$—specifically the values of the process at crossing times, viz. $\{(Z_{\tau_j}, Z_{\nu_j})\}$—along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.
Real networks often exhibit clustering, the tendency to form relatively small groups of nodes with high edge densities. This clustering property can cause large numbers of small and dense subgraphs to emerge in otherwise sparse networks. Subgraph counts are an important and commonly used source of information about the network structure and function. We study probability distributions of subgraph counts in a community affiliation graph. This is a random graph generated as an overlay of m partly overlapping independent Bernoulli random graphs (layers) $G_1,\dots,G_m$ with variable sizes and densities. The model is parameterised by a joint distribution of layer sizes and densities. When m grows linearly in the number of nodes n, the model generates sparse random graphs with a rich statistical structure, admitting a nonvanishing clustering coefficient and a power-law limiting degree distribution. In this paper we establish the normal and $\alpha$-stable approximations to the numbers of small cliques, cycles, and more general 2-connected subgraphs of a community affiliation graph.