We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the minimum spanning tree problem on a weighted complete bipartite graph $K_{n_R, n_B}$ whose $n=n_R+n_B$ vertices are random, i.i.d. uniformly distributed points in the unit cube in $d$ dimensions and edge weights are the $p$-th power of their Euclidean distance, with $p\gt 0$. In the large $n$ limit with $n_R/n \to \alpha _R$ and $0\lt \alpha _R\lt 1$, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on $d$ only. Despite this difference, for $p\lt d$, we are able to prove that the total edge costs normalized by the rate $n^{1-p/d}$ converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.
Birth–death processes form a natural class where ideas and results on large deviations can be tested. We derive a large-deviation principle under an assumption that the rate of jump down (death) grows asymptotically linearly with the population size, while the rate of jump up (birth) grows sublinearly. We establish a large-deviation principle under various forms of scaling of the underlying process and the corresponding normalization of the logarithm of the large-deviation probabilities. The results show interesting features of dependence of the rate functional upon the parameters of the process and the forms of scaling and normalization.
Consider a well-shuffled deck of cards of n different types where each type occurs m times. In a complete feedback game, a player is asked to guess the top card from the deck. After each guess, the top card is revealed to the player and is removed from the deck. The total number of correct guesses in a complete feedback game has attracted significant interest in the past few decades. Under different regimes of m, n, the expected number of correct guesses, under the greedy (optimal) strategy, has been obtained by various authors, while there are not many results available about the fluctuations. In this paper we establish a central limit theorem with Berry–Esseen bounds when m is fixed and n is large. Our results extend to the case of decks where different types may have different multiplicity, under suitable assumptions.
This paper analyzes the training process of generative adversarial networks (GANs) via stochastic differential equations (SDEs). It first establishes SDE approximations for the training of GANs under stochastic gradient algorithms, with precise error bound analysis. It then describes the long-run behavior of GAN training via the invariant measures of its SDE approximations under proper conditions. This work builds a theoretical foundation for GAN training and provides analytical tools to study its evolution and stability.
In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $\unicode{x2124}$: in this model, the probability that the walk moves from a point of $\unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.
We consider an SIR (susceptible $\to$ infective $\to$ recovered) epidemic in a closed population of size n, in which infection spreads via mixing events, comprising individuals chosen uniformly at random from the population, which occur at the points of a Poisson process. This contrasts sharply with most epidemic models, in which infection is spread purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and an approximating branching process are constructed on a common probability space via embedded random walks. We show that under suitable conditions the process of infectives in the epidemic process converges almost surely to the branching process. This leads to a threshold theorem for the epidemic process, where a major outbreak is defined as one that infects at least $\log n$ individuals. We show further that there exists $\delta \gt 0$, depending on the model parameters, such that the probability that a major outbreak has size at least $\delta n$ tends to one as $n \to \infty$.
Given a connected graph $H$ which is not a star, we show that the number of copies of $H$ in a dense uniformly random regular graph is asymptotically Gaussian, which was not known even for $H$ being a triangle. This addresses a question of McKay from the 2010 International Congress of Mathematicians. In fact, we prove that the behavior of the variance of the number of copies of $H$ depends in a delicate manner on the occurrence and number of cycles of $3,4,5$ edges as well as paths of $3$ edges in $H$. More generally, we provide control of the asymptotic distribution of certain statistics of bounded degree which are invariant under vertex permutations, including moments of the spectrum of a random regular graph. Our techniques are based on combining complex-analytic methods due to McKay and Wormald used to enumerate regular graphs with the notion of graph factors developed by Janson in the context of studying subgraph counts in $\mathbb {G}(n,p)$.
Extreme value theory plays an important role in providing approximation results for the extremes of a sequence of independent random variables when their distribution is unknown. An important one is given by the generalised Pareto distribution $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold t, where s(t) is a suitable norming function. We study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback–Leibler divergence between the respective densities.
Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment $\{Z_n\}$ whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points $\{(\tau_j, \nu_j)\}$—specifically the values of the process at crossing times, viz. $\{(Z_{\tau_j}, Z_{\nu_j})\}$—along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.
Real networks often exhibit clustering, the tendency to form relatively small groups of nodes with high edge densities. This clustering property can cause large numbers of small and dense subgraphs to emerge in otherwise sparse networks. Subgraph counts are an important and commonly used source of information about the network structure and function. We study probability distributions of subgraph counts in a community affiliation graph. This is a random graph generated as an overlay of m partly overlapping independent Bernoulli random graphs (layers) $G_1,\dots,G_m$ with variable sizes and densities. The model is parameterised by a joint distribution of layer sizes and densities. When m grows linearly in the number of nodes n, the model generates sparse random graphs with a rich statistical structure, admitting a nonvanishing clustering coefficient and a power-law limiting degree distribution. In this paper we establish the normal and $\alpha$-stable approximations to the numbers of small cliques, cycles, and more general 2-connected subgraphs of a community affiliation graph.
We consider parallel single-server queues in heavy traffic with randomly split Hawkes arrival processes. The service times are assumed to be independent and identically distributed (i.i.d.) in each queue and are independent in different queues. In the critically loaded regime at each queue, it is shown that the diffusion-scaled queueing and workload processes converge to a multidimensional reflected Brownian motion in the non-negative orthant with orthonormal reflections. For the model with abandonment, we also show that the corresponding limit is a multidimensional reflected Ornstein–Uhlenbeck diffusion in the non-negative orthant.
We use Stein’s method to establish the rates of normal approximation in terms of the total variation distance for a large class of sums of score functions of samples arising from random events driven by a marked Poisson point process on $\mathbb{R}^d$. As in the study under the weaker Kolmogorov distance, the score functions are assumed to satisfy stabilisation and moment conditions. At the cost of an additional non-singularity condition, we show that the rates are in line with those under the Kolmogorov distance. We demonstrate the use of the theorems in four applications: Voronoi tessellations, k-nearest-neighbours graphs, timber volume, and maximal layers.
We consider infinitely wide multi-layer perceptrons (MLPs) which are limits of standard deep feed-forward neural networks. We assume that, for each layer, the weights of an MLP are initialized with independent and identically distributed (i.i.d.) samples from either a light-tailed (finite-variance) or a heavy-tailed distribution in the domain of attraction of a symmetric $\alpha$-stable distribution, where $\alpha\in(0,2]$ may depend on the layer. For the bias terms of the layer, we assume i.i.d. initializations with a symmetric $\alpha$-stable distribution having the same $\alpha$ parameter as that layer. Non-stable heavy-tailed weight distributions are important since they have been empirically seen to emerge in trained deep neural nets such as the ResNet and VGG series, and proven to naturally arise via stochastic gradient descent. The introduction of heavy-tailed weights broadens the class of priors in Bayesian neural networks. In this work we extend a recent result of Favaro, Fortini, and Peluchetti (2020) to show that the vector of pre-activation values at all nodes of a given hidden layer converges in the limit, under a suitable scaling, to a vector of i.i.d. random variables with symmetric $\alpha$-stable distributions, $\alpha\in(0,2]$.
We show how convergence to the Gumbel distribution in an extreme value setting can be understood in an information-theoretic sense. We introduce a new type of score function which behaves well under the maximum operation, and which implies simple expressions for entropy and relative entropy. We show that, assuming certain properties of the von Mises representation, convergence to the Gumbel distribution can be proved in the strong sense of relative entropy.
This paper investigates properties of the class of graphs based on exchangeable point processes. We provide asymptotic expressions for the number of edges, number of nodes, and degree distributions, identifying four regimes: (i) a dense regime, (ii) a sparse, almost dense regime, (iii) a sparse regime with power-law behaviour, and (iv) an almost extremely sparse regime. We show that, under mild assumptions, both the global and local clustering coefficients converge to constants which may or may not be the same. We also derive a central limit theorem for subgraph counts and for the number of nodes. Finally, we propose a class of models within this framework where one can separately control the latent structure and the global sparsity/power-law properties of the graph.
In this paper, we consider the convergence rate with respect to Wasserstein distance in the invariance principle for deterministic non-uniformly hyperbolic systems. Our results apply to uniformly hyperbolic systems and large classes of non-uniformly hyperbolic systems including intermittent maps, Viana maps, unimodal maps and others. Furthermore, as a non-trivial application to the homogenization problem, we investigate the Wasserstein convergence rate of a fast–slow discrete deterministic system to a stochastic differential equation.
A system of interacting multi-class finite-state jump processes is analyzed. The model under consideration consists of a block-structured network with dynamically changing multi-color nodes. The interactions are local and described through local empirical measures. Two levels of heterogeneity are considered: between and within the blocks where the nodes are labeled into two types. The central nodes are those connected only to nodes from the same block, whereas the peripheral nodes are connected to both nodes from the same block and nodes from other blocks. Limits of such systems as the number of nodes tends to infinity are investigated. In particular, under specific regularity conditions, propagation of chaos and the law of large numbers are established in a multi-population setting. Moreover, it is shown that, as the number of nodes goes to infinity, the behavior of the system can be represented by the solution of a McKean–Vlasov system. Then, we prove large deviations principles for the vectors of empirical measures and the empirical processes, which extends the classical results of Dawson and Gärtner (Stochastics20, 1987) and Léonard (Ann. Inst. H. Poincaré Prob. Statist.31, 1995).
We study homogenization for a class of non-symmetric pure jump Feller processes. The jump intensity involves periodic and aperiodic constituents, as well as oscillating and non-oscillating constituents. This means that the noise can come both from the underlying periodic medium and from external environments, and is allowed to have different scales. It turns out that the Feller process converges in distribution, as the scaling parameter goes to zero, to a Lévy process. As special cases of our result, some homogenization problems studied in previous works can be recovered. We also generalize the approach to the homogenization of symmetric stable-like processes with variable order. Moreover, we present some numerical experiments to demonstrate the usage of our homogenization results in the numerical approximation of first exit times.
We study the large-volume asymptotics of the sum of power-weighted edge lengths $\sum_{e \in E}|e|^\alpha$ in Poisson-based spatial random networks. In the regime $\alpha > d$, we provide a set of sufficient conditions under which the upper-large-deviation asymptotics are characterized by a condensation phenomenon, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed, bidirected, and undirected variants of the k-nearest-neighbor graph, as well as suitable $\beta$-skeletons.