We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we consider the problem of averaging for a class of piecewise deterministic Markov processes (PDMPs) whose dynamic is constrained by the presence of a boundary. On reaching the boundary, the process is forced to jump away from it. We assume that this boundary is attractive for the process in question in the sense that its averaged flow is not tangent to it. Our averaging result relies strongly on the existence of densities for the process, allowing us to study the average number of crossings of a smooth hypersurface by an unconstrained PDMP and to deduce from this study averaging results for constrained PDMPs.
The basic idea of voting protocols is that nodes query a sample of other nodes and adjust their own opinion throughout several rounds based on the proportion of the sampled opinions. In the classic model, it is assumed that all nodes have the same weight. We study voting protocols for heterogeneous weights with respect to fairness. A voting protocol is fair if the influence on the eventual outcome of a given participant is linear in its weight. Previous work used sampling with replacement to construct a fair voting scheme. However, it was shown that using greedy sampling, i.e., sampling with replacement until a given number of distinct elements is chosen, turns out to be more robust and performant.
In this paper, we study fairness of voting protocols with greedy sampling and propose a voting scheme that is asymptotically fair for a broad class of weight distributions. We complement our theoretical findings with numerical results and present several open questions and conjectures.
We study the distribution of the consensus formed by a broadcast-based consensus algorithm for cases in which the initial opinions of agents are random variables. We first derive two fundamental equations for the time evolution of the average opinion of agents. Using the derived equations, we then investigate the distribution of the consensus in the limit in which agents do not have any mutual trust, and show that the consensus without mutual trust among agents is in sharp contrast to the consensus with complete mutual trust in the statistical properties if the initial opinion of each agent is integrable. Next, we provide the formulation necessary to mathematically discuss the consensus in the limit in which the number of agents tends to infinity, and derive several results, including a central limit theorem concerning the consensus in this limit. Finally, we study the distribution of the consensus when the initial opinions of agents follow a stable distribution, and show that the consensus also follows a stable distribution in the limit in which the number of agents tends to infinity.
We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure-preserving $\mathbb {Z}^d$-actions with multivariable integer polynomial iterates is the sum of a nilsequence and a nullsequence, extending a recent result of the second author. To this end, we develop a new seminorm bound estimate for multiple averages by improving the results in a previous work of the first, third, and fourth authors. We also use this approach to obtain new criteria for joint ergodicity of multiple averages with multivariable polynomial iterates on ${\mathbb Z}^{d}$-systems.
An edge flipping is a non-reversible Markov chain on a given connected graph, as defined in Chung and Graham (2012). In the same paper, edge flipping eigenvalues and stationary distributions for some classes of graphs were identified. We further study edge flipping spectral properties to show a lower bound for the rate of convergence in the case of regular graphs. Moreover, we show by a coupling argument that a cutoff occurs at $\frac{1}{4} n \log n$ for the edge flipping on the complete graph.
We study the coupon collector’s problem with group drawings. Assume there are n different coupons. At each time precisely s of the n coupons are drawn, where all choices are supposed to have equal probability. The focus lies on the fluctuations, as $n\to\infty$, of the number $Z_{n,s}(k_n)$ of coupons that have not been drawn in the first $k_n$ drawings. Using a size-biased coupling construction together with Stein’s method for normal approximation, a quantitative central limit theorem for $Z_{n,s}(k_n)$ is shown for the case that $k_n=({n/s})(\alpha\log(n)+x)$, where $0<\alpha<1$ and $x\in\mathbb{R}$. The same coupling construction is used to retrieve a quantitative Poisson limit theorem in the boundary case $\alpha=1$, again using Stein’s method.
Large deviations of the largest and smallest eigenvalues of $\mathbf{X}\mathbf{X}^\top/n$ are studied in this note, where $\mathbf{X}_{p\times n}$ is a $p\times n$ random matrix with independent and identically distributed (i.i.d.) sub-Gaussian entries. The assumption imposed on the dimension size p and the sample size n is $p=p(n)\rightarrow\infty$ with $p(n)={\mathrm{o}}(n)$. This study generalizes one result obtained in [3].
Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variables on the random infinite connected component. We provide sufficient conditions for the existence of the asymptotic shape, and we show that the shape is a Euclidean ball. We give some examples exhibiting the result for Bernoulli percolation and the Richardson model. In the latter case we further show that it converges weakly to a nonstandard branching process in the joint limit of large intensities and slow passage times.
Let $(Z_n)_{n\geq0}$ be a supercritical Galton–Watson process. Consider the Lotka–Nagaev estimator for the offspring mean. In this paper we establish self-normalized Cramér-type moderate deviations and Berry–Esseen bounds for the Lotka–Nagaev estimator. The results are believed to be optimal or near-optimal.
Consider a set of n vertices, where each vertex has a location in $\mathbb{R}^d$ that is sampled uniformly from the unit cube in $\mathbb{R}^d$, and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights.
Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $\mathbb{R}^d$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models.
We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting.
Two ensembles are frequently used to model random graphs subject to constraints: the microcanonical ensemble (= hard constraint) and the canonical ensemble (= soft constraint). It is said that breaking of ensemble equivalence (BEE) occurs when the specific relative entropy of the two ensembles does not vanish as the size of the graph tends to infinity. Various examples have been analysed in the literature. It was found that BEE is the rule rather than the exception for two classes of constraints: sparse random graphs when the number of constraints is of the order of the number of vertices, and dense random graphs when there are two or more constraints that are frustrated. We establish BEE for a third class: dense random graphs with a single constraint on the density of a given simple graph. We show that BEE occurs in a certain range of choices for the density and the number of edges of the simple graph, which we refer to as the BEE-phase. We also show that, in part of the BEE-phase, there is a gap between the scaling limits of the averages of the maximal eigenvalue of the adjacency matrix of the random graph under the two ensembles, a property that is referred to as the spectral signature of BEE. We further show that in the replica symmetric region of the BEE-phase, BEE is due to the coexistence of two densities in the canonical ensemble.
Stein’s method is used to study discrete representations of multidimensional distributions that arise as approximations of states of quantum harmonic oscillators. These representations model how quantum effects result from the interaction of finitely many classical ‘worlds’, with the role of sample size played by the number of worlds. Each approximation arises as the ground state of a Hamiltonian involving a particular interworld potential function. Our approach, framed in terms of spherical coordinates, provides the rate of convergence of the discrete approximation to the ground state in terms of Wasserstein distance. Applying a novel Stein’s method technique to the radial component of the ground state solution, the fastest rate of convergence to the ground state is found to occur in three dimensions.
Risk measurements are clearly central to risk management, in particular for banks, (re)insurance companies, and investment funds. The question of the appropriateness of risk measures for evaluating the risk of financial institutions has been heavily debated, especially after the financial crisis of 2008/2009. Another concern for financial institutions is the pro-cyclicality of risk measurements. In this paper, we extend existing work on the pro-cyclicality of the Value-at-Risk to its main competitors, Expected Shortfall, and Expectile: We compare the pro-cyclicality of historical quantile-based risk estimation, taking into account the market state. To characterise the latter, we propose various estimators of the realised volatility. Considering the family of augmented GARCH(p, q) processes (containing well-known GARCH models and iid models, as special cases), we prove that the strength of pro-cyclicality depends on the three factors: the choice of risk measure and its estimators, the realised volatility estimator and the model considered, but, no matter the choices, the pro-cyclicality is always present. We complement this theoretical analysis by performing simulation studies in the iid case and developing a case study on real data.
We study (asymmetric) $U$-statistics based on a stationary sequence of $m$-dependent variables; moreover, we consider constrained $U$-statistics, where the defining multiple sum only includes terms satisfying some restrictions on the gaps between indices. Results include a law of large numbers and a central limit theorem, together with results on rate of convergence, moment convergence, functional convergence, and a renewal theory version.
Special attention is paid to degenerate cases where, after the standard normalization, the asymptotic variance vanishes; in these cases non-normal limits occur after a different normalization.
The results are motivated by applications to pattern matching in random strings and permutations. We obtain both new results and new proofs of old results.
Let $({\mathbb X}, T)$ be a subshift of finite type equipped with the Gibbs measure $\nu $ and let f be a real-valued Hölder continuous function on ${\mathbb X}$ such that $\nu (f) = 0$. Consider the Birkhoff sums $S_n f = \sum _{k=0}^{n-1} f \circ T^{k}$, $n\geqslant 1$. For any $t \in {\mathbb R}$, denote by $\tau _t^f$ the first time when the sum $t+ S_n f$ leaves the positive half-line for some $n\geqslant 1$. By analogy with the case of random walks with independent and identically distributed increments, we study the asymptotic as $ n\to \infty $ of the probabilities $ \nu (x\in {\mathbb X}: \tau _t^f(x)>n) $ and $ {\nu (x\in {\mathbb X}: \tau _t^f(x)=n) }$. We also establish integral and local-type limit theorems for the sum $t+ S_n f(x)$ conditioned on the set $\{ x \in {\mathbb X}: \tau _t^f(x)>n \}.$
We are interested in a fragmentation process. We observe fragments frozen when their sizes are less than $\varepsilon$ ($\varepsilon>0$). It is known (Bertoin and Martínez, 2005) that the empirical measure of these fragments converges in law, under some renormalization. Hoffmann and Krell (2011) showed a bound for the rate of convergence. Here, we show a central limit theorem, under some assumptions. This gives us an exact rate of convergence.
This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function f, the time average
$\frac{1}{t} \int_0^t f(X_s)ds$
converges in
$\mathbb{L}^2$
towards a limiting distribution, starting from any initial distribution for the process
$(X_t)_{t \geq 0}$
. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result is then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.
Erdős considered the second moment of the gap-counting function of prime divisors in 1946 and proved an upper bound that is not of the right order of magnitude. We prove asymptotics for all moments. Furthermore, we prove a generalisation stating that the gaps between primes p for which there is no
$\mathbb{Q}_p$
-point on a random variety are Poisson distributed.
This paper addresses the asymptotic analysis of sojourn functionals of spatiotemporal Gaussian random fields with long-range dependence (LRD) in time, also known as long memory. Specifically, reduction theorems are derived for local functionals of nonlinear transformation of such fields, with Hermite rank $m\geq 1,$ under general covariance structures. These results are proven to hold, in particular, for a family of nonseparable covariance structures belonging to the Gneiting class. For $m=2,$ under separability of the spatiotemporal covariance function in space and time, the properly normalized Minkowski functional, involving the modulus of a Gaussian random field, converges in distribution to the Rosenblatt-type limiting distribution for a suitable range of values of the long-memory parameter.
In this study, we consider a class of multiple-drawing opposite-reinforcing urns with time-dependent replacement rules. The class has the symmetric property of a Friedman-type urn. We divide the class into a small-increment regime and a large-increment regime. For small-increment schemes, we prove almost-sure convergence and a central limit theorem for the proportion of white balls by stochastic approximation. For large-increment schemes, by assuming the affinity condition, we show almost-sure convergence of the proportion of white balls by martingale theory and present a way to identify the limit distribution of the proportion of white balls.