To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $q\ge2$ be an integer, $\{X_n\}_{n\geq 1}$ a stochastic process with state space $\{0,\ldots,q-1\}$, and F the cumulative distribution function (CDF) of $\sum_{n=1}^\infty X_n q^{-n}$. We show that stationarity of $\{X_n\}_{n\geq 1}$ is equivalent to a functional equation obeyed by F, and use this to characterize the characteristic function of X and the structure of F in terms of its Lebesgue decomposition. More precisely, while the absolutely continuous component of F can only be the uniform distribution on the unit interval, its discrete component can only be a countable convex combination of certain explicitly computable CDFs for probability distributions with finite support. We also show that $\mathrm{d} F$ is a Rajchman measure if and only if F is the uniform CDF on [0, 1].
In this paper we introduce two new classes of stationary random simplicial tessellations, the so-called $\beta$- and $\beta^{\prime}$-Delaunay tessellations. Their construction is based on a space–time paraboloid hull process and generalizes that of the classical Poisson–Delaunay tessellation. We explicitly identify the distribution of volume-power-weighted typical cells, establishing thereby a remarkable connection to the classes of $\beta$- and $\beta^{\prime}$-polytopes. These representations are used to determine the principal characteristics of such cells, including volume moments, expected angle sums, and cell intensities.
We study an example of a hit-and-run random walk on the symmetric group $\mathbf S_n$. Our starting point is the well-understood top-to-random shuffle. In the hit-and-run version, at each single step, after picking the point of insertion j uniformly at random in $\{1,\ldots,n\}$, the top card is inserted in the jth position k times in a row, where k is uniform in $\{0,1,\ldots,j-1\}$. The question is, does this accelerate mixing significantly or not? We show that, in $L^2$ and sup-norm, this accelerates mixing at most by a constant factor (independent of n). Analyzing this problem in total variation is an interesting open question. We show that, in general, hit-and-run random walks on finite groups have non-negative spectrum.
$U{\hbox{-}}\textrm{max}$ statistics were introduced by Lao and Mayer in 2008. Such statistics are natural in stochastic geometry. Examples are the maximal perimeters and areas of polygons and polyhedra formed by random points on a circle, ellipse, etc. The main method to study limit theorems for $U{\hbox{-}}\textrm{max}$ statistics is via a Poisson approximation. In this paper we consider a general class of kernels defined on a circle, and we prove a universal limit theorem with the Weibull distribution as a limit. Its parameters depend on the degree of the kernel, the structure of its points of maximum, and the Hessians of the kernel at these points. Almost all limit theorems known so far may be obtained as simple special cases of our general theorem. We also consider several new examples. Moreover, we consider not only the uniform distribution of points but also almost arbitrary distribution on a circle satisfying mild additional conditions.
In this paper, we consider an extended class of univariate and multivariate generalized Pólya processes and study its properties. In the generalized Pólya process considered in [8], each occurrence of an event increases the stochastic intensity of the counting process. In the extended class studied in this paper, on the contrary, it decreases the stochastic intensity of the process, which induces a kind of negative dependence in the increments in the disjoint time intervals. First, we define the extended class of generalized Pólya processes and derive some preliminary results which will be used in the remaining part of the paper. It is seen that the extended class of generalized Pólya processes can be viewed as generalized pure death processes, where the death rate depends on both the state and the time. Based on the preliminary results, the main properties of the multivariate extended generalized Pólya process and meaningful characterizations are obtained. Finally, possible applications to reliability modeling are briefly discussed.
Let $X_1,X_2, \ldots, X_n$ be a sequence of independent random points in $\mathbb{R}^d$ with common Lebesgue density f. Under some conditions on f, we obtain a Poisson limit theorem, as $n \to \infty$, for the number of large probability kth-nearest neighbor balls of $X_1,\ldots, X_n$. Our result generalizes Theorem 2.2 of [11], which refers to the special case $k=1$. Our proof is completely different since it employs the Chen–Stein method instead of the method of moments. Moreover, we obtain a rate of convergence for the Poisson approximation.
A second-order random walk on a graph or network is a random walk where transition probabilities depend not only on the present node but also on the previous one. A notable example is the non-backtracking random walk, where the walker is not allowed to revisit a node in one step. Second-order random walks can model physical diffusion phenomena in a more realistic way than traditional random walks and have been very successfully used in various network mining and machine learning settings. However, numerous questions are still open for this type of stochastic processes. In this work, we extend well-known results concerning mean hitting and return times of standard random walks to the second-order case. In particular, we provide simple formulas that allow us to compute these numbers by solving suitable systems of linear equations. Moreover, by introducing the ‘pullback’ first-order stochastic process of a second-order random walk, we provide second-order versions of the renowned Kac’s and Random Target Lemmas.
We derive closed-form solutions to some discounted optimal stopping problems related to the perpetual American cancellable dividend-paying put and call option pricing problems in an extension of the Black–Merton–Scholes model. The cancellation times are assumed to occur when the underlying risky asset price process hits some unobservable random thresholds. The optimal stopping times are shown to be the first times at which the asset price reaches stochastic boundaries depending on the current values of its running maximum and minimum processes. The proof is based on the reduction of the original optimal stopping problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit and modified normal-reflection conditions. We show that the optimal stopping boundaries are characterised as the maximal and minimal solutions of certain first-order nonlinear ordinary differential equations.
We propose non-asymptotic controls of the cumulative distribution function $\mathbb{P}(|X_{t}|\ge \varepsilon)$, for any $t>0$, $\varepsilon>0$ and any Lévy process X such that its Lévy density is bounded from above by the density of an $\alpha$-stable-type Lévy process in a neighborhood of the origin.
Empirical studies (e.g. Jiang et al. (2015) and Mislove et al. (2007)) show that online social networks have not only in- and out-degree distributions with Pareto-like tails, but also a high proportion of reciprocal edges. A classical directed preferential attachment (PA) model generates in- and out-degree distributions with power-law tails, but the theoretical properties of the reciprocity feature in this model have not yet been studied. We derive asymptotic results on the number of reciprocal edges between two fixed nodes, as well as the proportion of reciprocal edges in the entire PA network. We see that with certain choices of parameters, the proportion of reciprocal edges in a directed PA network is close to 0, which differs from the empirical observation. This points out one potential problem of fitting a classical PA model to a given network dataset with high reciprocity, and indicates that alternative models need to be considered.
We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.
We prove that many, but not all, injective factors arise as crossed products by nonsingular Bernoulli actions of the group $\mathbb {Z}$. We obtain this result by proving a completely general result on the ergodicity, type and Krieger’s associated flow for Bernoulli shifts with arbitrary base spaces. We prove that the associated flow must satisfy a structural property of infinite divisibility. Conversely, we prove that all almost periodic flows, as well as many other ergodic flows, do arise as associated flow of a weakly mixing Bernoulli action of any infinite amenable group. As a byproduct, we prove that all injective factors with almost periodic flow of weights are infinite tensor products of $2 \times 2$ matrices. Finally, we construct Poisson suspension actions with prescribed associated flow for any locally compact second countable group that does not have property (T).
We consider two-dimensional Lévy processes reflected to stay in the positive quadrant. Our focus is on the non-standard regime when the mean of the free process is negative but the reflection vectors point away from the origin, so that the reflected process escapes to infinity along one of the axes. Under rather general conditions, it is shown that such behaviour is certain and each component can dominate the other with positive probability for any given starting position. Additionally, we establish the corresponding invariance principle providing justification for the use of the reflected Brownian motion as an approximate model. Focusing on the probability that the first component dominates, we derive a kernel equation for the respective Laplace transform in the starting position. This is done for the compound Poisson model with negative exponential jumps and, by means of approximation, for the Brownian model. Both equations are solved via boundary value problem analysis, which also yields the domination probability when starting at the origin. Finally, certain asymptotic analysis and numerical results are presented.
The signature of a path can be described as its full non-commutative exponential. Following T. Lyons, we regard its expectation, the expected signature, as a path space analogue of the classical moment generating function. The logarithm thereof, taken in the tensor algebra, defines the signature cumulant. We establish a universal functional relation in a general semimartingale context. Our work exhibits the importance of Magnus expansions in the algorithmic problem of computing expected signature cumulants and further offers a far-reaching generalization of recent results on characteristic exponents dubbed diamond and cumulant expansions with motivations ranging from financial mathematics to statistical physics. From an affine semimartingale perspective, the functional relation may be interpreted as a type of generalized Riccati equation.
Taylor’s power law (or fluctuation scaling) states that on comparable populations, the variance of each sample is approximately proportional to a power of the mean of the population. The law has been shown to hold by empirical observations in a broad class of disciplines including demography, biology, economics, physics, and mathematics. In particular, it has been observed in problems involving population dynamics, market trading, thermodynamics, and number theory. In applications, many authors consider panel data in order to obtain laws of large numbers. Essentially, we aim to consider ergodic behaviors without independence. We restrict our study to stationary time series, and develop different Taylor exponents in this setting. From a theoretical point of view, there has been a growing interest in the study of the behavior of such a phenomenon. Most of these works focused on the so-called static Taylor’s law related to independent samples. In this paper we introduce a dynamic Taylor’s law for dependent samples using self-normalized expressions involving Bernstein blocks. A central limit theorem (CLT) is proved under either weak dependence or strong mixing assumptions for the marginal process. The limit behavior of the estimation involves a series of covariances, unlike the classic framework where the limit behavior involves the marginal variance. We also provide an asymptotic result for a goodness-of-fit procedure suitable for checking whether the corresponding dynamic Taylor’s law holds in empirical studies.
We solve non-Markovian optimal switching problems in discrete time on an infinite horizon, when the decision-maker is risk-aware and the filtration is general, and establish existence and uniqueness of solutions for the associated reflected backward stochastic difference equations. An example application to hydropower planning is provided.
This study deals with the ruin problem when an insurance company having two business branches, life insurance and non-life insurance, invests its reserves in a risky asset with the price dynamics given by a geometric Brownian motion. We prove a result on the smoothness of the ruin probability as a function of the initial capital, and obtain for it an integro-differential equation understood in the classical sense. For the case of exponentially distributed jumps we show that the survival (as well as the ruin) probability is a solution of an ordinary differential equation of the fourth order. Asymptotic analysis of the latter leads to the conclusion that the ruin probability decays to zero in the same way as in the already studied cases of models with one-sided jumps.
In this paper, we construct operator fractional Lévy motion (ofLm), a broad class of infinitely divisible stochastic processes that are covariance operator self-similar and have wide-sense stationary increments. The ofLm class generalizes the univariate fractional Lévy motion as well as the multivariate operator fractional Brownian motion (ofBm). OfLm can be divided into two types, namely, moving average (maofLm) and real harmonizable (rhofLm), both of which share the covariance structure of ofBm under assumptions. We show that maofLm and rhofLm admit stochastic integral representations in the time and Fourier domains, and establish their distinct small- and large-scale limiting behavior. We also characterize time-reversibility for ofLm through parametric conditions related to its Lévy measure. In particular, we show that, under non-Gaussianity, the parametric conditions for time-reversibility are generally more restrictive than those for the Gaussian case (ofBm).
We study an N-player game where a pure action of each player is to select a nonnegative function on a Polish space supporting a finite diffuse measure, subject to a finite constraint on the integral of the function. This function is used to define the intensity of a Poisson point process on the Polish space. The processes are independent over the players, and the value to a player is the measure of the union of her open Voronoi cells in the superposition point process. Under randomized strategies, the process of points of a player is thus a Cox process, and the nature of competition between the players is akin to that in Hotelling competition games. We characterize when such a game admits Nash equilibria and prove that when a Nash equilibrium exists, it is unique and consists of pure strategies that are proportional in the same proportions as the total intensities. We give examples of such games where Nash equilibria do not exist. A better understanding of the criterion for the existence of Nash equilibria remains an intriguing open problem.