To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study some properties of the generalized Fokker–Planck equation induced by the time-changed fractional Ornstein–Uhlenbeck process. First of all, we exploit some sufficient conditions to show that a mild solution of such equation is actually a classical solution. Then, we discuss an isolation result for mild solutions. Finally, we prove the weak maximum principle for strong solutions of the aforementioned equation and then a uniqueness result.
In this paper we consider the one-dimensional, biased, randomly trapped random walk with infinite-variance trapping times. We prove sufficient conditions for the suitably scaled walk to converge to a transformation of a stable Lévy process. As our main motivation, we apply subsequential versions of our results to biased walks on subcritical Galton–Watson trees conditioned to survive. This confirms the correct order of the fluctuations of the walk around its speed for values of the bias that yield a non-Gaussian regime.
This paper considers logarithmic asymptotics of tails of randomly stopped sums. The stopping is assumed to be independent of the underlying random walk. First, finiteness of ordinary moments is revisited. Then the study is expanded to more general asymptotic analysis. Results are applicable to a large class of heavy-tailed random variables. The main result enables one to identify if the asymptotic behaviour of a stopped sum is dominated by its increments or the stopping variable. As a consequence, new sufficient conditions for the moment determinacy of compounded sums are obtained.
The logistic birth and death process is perhaps the simplest stochastic population model that has both density-dependent reproduction and a phase transition, and a lot can be learned about the process by studying its extinction time, $\tau_n$, as a function of system size n. A number of existing results describe the scaling of $\tau_n$ as $n\to\infty$ for various choices of reproductive rate $r_n$ and initial population $X_n(0)$ as a function of n. We collect and complete this picture, obtaining a complete classification of all sequences $(r_n)$ and $(X_n(0))$ for which there exist rescaling parameters $(s_n)$ and $(t_n)$ such that $(\tau_n-t_n)/s_n$ converges in distribution as $n\to\infty$, and identifying the limits in each case.
Oscillatory systems of interacting Hawkes processes with Erlang memory kernels were introduced by Ditlevsen and Löcherbach (Stoch. Process. Appl., 2017). They are piecewise deterministic Markov processes (PDMP) and can be approximated by a stochastic diffusion. In this paper, first, a strong error bound between the PDMP and the diffusion is proved. Second, moment bounds for the resulting diffusion are derived. Third, approximation schemes for the diffusion, based on the numerical splitting approach, are proposed. These schemes are proved to converge with mean-square order 1 and to preserve the properties of the diffusion, in particular the hypoellipticity, the ergodicity, and the moment bounds. Finally, the PDMP and the diffusion are compared through numerical experiments, where the PDMP is simulated with an adapted thinning procedure.
We introduce a definition of long range dependence of random processes and fields on an (unbounded) index space $T\subseteq \mathbb{R}^d$ in terms of integrability of the covariance of indicators that a random function exceeds any given level. This definition is specifically designed to cover the case of random functions with infinite variance. We show the value of this new definition and its connection to limit theorems via some examples including subordinated Gaussian as well as random volatility fields and time series.
This paper considers a variant of the classical Cramér–Lundberg model that is particularly appropriate in the credit context, with the distinguishing feature that it corresponds to a finite number of obligors. The focus is on computing the ruin probability, i.e. the probability that the initial reserve, increased by the interest received from the obligors and decreased by the losses due to defaults, drops below zero. As well as an exact analysis (in terms of transforms) of this ruin probability, an asymptotic analysis is performed, including an efficient importance-sampling-based simulation approach.
The base model is extended in multiple dimensions: (i) we consider a model in which there may, in addition, be losses that do not correspond to defaults, (ii) then we analyze a model in which the individual obligors are coupled via a regime switching mechanism, (iii) then we extend the model so that between the losses the reserve process behaves as a Brownian motion rather than a deterministic drift, and (iv) we finally consider a set-up with multiple groups of statistically identical obligors.
Coupling-from-the-past (CFTP) methods have been used to generate perfect samples from finite Gibbs hard-sphere models, an important class of spatial point processes consisting of a set of spheres with the centers on a bounded region that are distributed as a homogeneous Poisson point process (PPP) conditioned so that spheres do not overlap with each other. We propose an alternative importance-sampling-based rejection methodology for the perfect sampling of these models. We analyze the asymptotic expected running time complexity of the proposed method when the intensity of the reference PPP increases to infinity while the (expected) sphere radius decreases to zero at varying rates. We further compare the performance of the proposed method analytically and numerically with that of a naive rejection algorithm and of popular dominated CFTP algorithms. Our analysis relies upon identifying large deviations decay rates of the non-overlapping probability of spheres whose centers are distributed as a homogeneous PPP.
In the classical simple random walk the steps are independent, that is, the walker has no memory. In contrast, in the elephant random walk, which was introduced by Schütz and Trimper [19] in 2004, the next step always depends on the whole path so far. Our main aim is to prove analogous results when the elephant has only a restricted memory, for example remembering only the most remote step(s), the most recent step(s), or both. We also extend the models to cover more general step sizes.
Let $\mathcal {M}$ be a semifinite von Nemann algebra equipped with an increasing filtration $(\mathcal {M}_n)_{n\geq 1}$ of (semifinite) von Neumann subalgebras of $\mathcal {M}$. For $0<p <\infty $, let $\mathsf {h}_p^c(\mathcal {M})$ denote the noncommutative column conditioned martingale Hardy space and $\mathsf {bmo}^c(\mathcal {M})$ denote the column “little” martingale BMO space associated with the filtration $(\mathcal {M}_n)_{n\geq 1}$.
We prove the following real interpolation identity: if $0<p <\infty $ and $0<\theta <1$, then for $1/r=(1-\theta )/p$,
These extend previously known results from $p\geq 1$ to the full range $0<p<\infty $. Other related spaces such as spaces of adapted sequences and Junge’s noncommutative conditioned $L_p$-spaces are also shown to form interpolation scale for the full range $0<p<\infty $ when either the real method or the complex method is used. Our method of proof is based on a new algebraic atomic decomposition for Orlicz space version of Junge’s noncommutative conditioned $L_p$-spaces.
We apply these results to derive various inequalities for martingales in noncommutative symmetric quasi-Banach spaces.
We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented.
Mixing rates, relaxation rates, and decay of correlations for dynamics defined by potentials with summable variations are well understood, but little is known for non-summable variations. This paper exhibits upper bounds for these quantities for dynamics defined by potentials with square-summable variations. We obtain these bounds as corollaries of a new block coupling inequality between pairs of dynamics starting with different histories. As applications of our results, we prove a new weak invariance principle and a Hoeffding-type inequality.
Cogdell et al. [‘Evaluating the Mahler measure of linear forms via Kronecker limit formulas on complex projective space’, Trans. Amer. Math. Soc. (2021), to appear] developed infinite series representations for the logarithmic Mahler measure of a complex linear form with four or more variables. We establish the case of three variables by bounding an integral with integrand involving the random walk probability density $a\int _0^\infty tJ_0(at) \prod _{m=0}^2 J_0(r_m t)\,dt$, where $J_0$ is the order-zero Bessel function of the first kind and a and $r_m$ are positive real numbers. To facilitate our proof we develop an alternative description of the integral’s asymptotic behaviour at its known points of divergence. As a computational aid for numerical experiments, an algorithm to calculate these series is presented in the appendix.
In this work, we study a new model for continuum line-of-sight percolation in a random environment driven by the Poisson–Voronoi tessellation in the d-dimensional Euclidean space. The edges (one-dimensional facets, or simply 1-facets) of this tessellation are the support of a Cox point process, while the vertices (zero-dimensional facets or simply 0-facets) are the support of a Bernoulli point process. Taking the superposition Z of these two processes, two points of Z are linked by an edge if and only if they are sufficiently close and located on the same edge (1-facet) of the supporting tessellation. We study the percolation of the random graph arising from this construction and prove that a 0–1 law, a subcritical phase, and a supercritical phase exist under general assumptions. Our proofs are based on a coarse-graining argument with some notion of stabilization and asymptotic essential connectedness to investigate continuum percolation for Cox point processes. We also give numerical estimates of the critical parameters of the model in the planar case, where our model is intended to represent telecommunications networks in a random environment with obstructive conditions for signal propagation.
We derive the large-sample distribution of the number of species in a version of Kingman’s Poisson–Dirichlet model constructed from an $\alpha$-stable subordinator but with an underlying negative binomial process instead of a Poisson process. Thus it depends on parameters $\alpha\in (0,1)$ from the subordinator and $r>0$ from the negative binomial process. The large-sample distribution of the number of species is derived as sample size $n\to\infty$. An important component in the derivation is the introduction of a two-parameter version of the Dickman distribution, generalising the existing one-parameter version. Our analysis adds to the range of Poisson–Dirichlet-related distributions available for modeling purposes.
There are two types of tempered stable (TS) based Ornstein–Uhlenbeck (OU) processes: (i) the OU-TS process, the OU process driven by a TS subordinator, and (ii) the TS-OU process, the OU process with TS marginal law. They have various applications in financial engineering and econometrics. In the literature, only the second type under the stationary assumption has an exact simulation algorithm. In this paper we develop a unified approach to exactly simulate both types without the stationary assumption. It is mainly based on the distributional decomposition of stochastic processes with the aid of an acceptance–rejection scheme. As the inverse Gaussian distribution is an important special case of TS distribution, we also provide tailored algorithms for the corresponding OU processes. Numerical experiments and tests are reported to demonstrate the accuracy and effectiveness of our algorithms, and some further extensions are also discussed.
We focus on the population dynamics driven by two classes of truncated $\alpha$-stable processes with Markovian switching. Almost necessary and sufficient conditions for the ergodicity of the proposed models are provided. Also, these results illustrate the impact on ergodicity and extinct conditions as the parameter $\alpha$ tends to 2.
We investigate the impact of Knightian uncertainty on the optimal timing policy of an ambiguity-averse decision-maker in the case where the underlying factor dynamics follow a multidimensional Brownian motion and the exercise payoff depends on either a linear combination of the factors or the radial part of the driving factor dynamics. We present a general characterization of the value of the optimal timing policy and the worst-case measure in terms of a family of explicitly identified excessive functions generating an appropriate class of supermartingales. In line with previous findings based on linear diffusions, we find that ambiguity accelerates timing in comparison with the unambiguous setting. Somewhat surprisingly, we find that ambiguity may lead to stationarity in models which typically do not possess stationary behavior. In this way, our results indicate that ambiguity may act as a stabilizing mechanism.
For a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.