We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Determinantal point processes (DPPs) enable the modeling of repulsion: they provide diverse sets of points. The repulsion is encoded in a kernel K that can be seen, in a discrete setting, as a matrix storing the similarity between points. The main exact algorithm to sample DPPs uses the spectral decomposition of K, a computation that becomes costly when dealing with a high number of points. Here we present an alternative exact algorithm to sample in discrete spaces that avoids the eigenvalues and the eigenvectors computation. The method used here is innovative, and numerical experiments show competitive results with respect to the initial algorithm.
It is well understood that a supercritical superprocess is equal in law to a discrete Markov branching process whose genealogy is dressed in a Poissonian way with immigration which initiates subcritical superprocesses. The Markov branching process corresponds to the genealogical description of prolific individuals, that is, individuals who produce eternal genealogical lines of descent, and is often referred to as the skeleton or backbone of the original superprocess. The Poissonian dressing along the skeleton may be considered to be the remaining non-prolific genealogical mass in the superprocess. Such skeletal decompositions are equally well understood for continuous-state branching processes (CSBP).
In a previous article [16] we developed an SDE approach to study the skeletal representation of CSBPs, which provided a common framework for the skeletal decompositions of supercritical and (sub)critical CSBPs. It also helped us to understand how the skeleton thins down onto one infinite line of descent when conditioning on survival until larger and larger times, and eventually forever.
Here our main motivation is to show the robustness of the SDE approach by expanding it to the spatial setting of superprocesses. The current article only considers supercritical superprocesses, leaving the subcritical case open.
Hermite processes are a class of self-similar processes with stationary increments. They often arise in limit theorems under long-range dependence. We derive new representations of Hermite processes with multiple Wiener–Itô integrals, whose integrands involve the local time of intersecting stationary stable regenerative sets. The proof relies on an approximation of regenerative sets and local times based on a scheme of random interval covering.
We construct a multitype constant-size population model allowing for general selective interactions as well as extreme reproductive events. Our multidimensional model aims for the generality of adaptive dynamics and the tractability of population genetics. It generalises the idea of Krone and Neuhauser [39] and González Casanova and Spanò [29], who represented the selection by allowing individuals to sample several potential parents in the previous generation before choosing the ‘strongest’ one, by allowing individuals to use any rule to choose their parent. The type of the newborn can even not be one of the types of the potential parents, which allows modelling mutations. Via a large population limit, we obtain a generalisation of
$\Lambda$
-Fleming–Viot processes, with a diffusion term and a general frequency-dependent selection, which allows for non-transitive interactions between the different types present in the population. We provide some properties of these processes related to extinction and fixation events, and give conditions for them to be realised as unique strong solutions of multidimensional stochastic differential equations with jumps. Finally, we illustrate the generality of our model with applications to some classical biological interactions. This framework provides a natural bridge between two of the most prominent modelling frameworks of biological evolution: population genetics and eco-evolutionary models.
A measure on a locally compact group is said to be spread out if one of its convolution powers is not singular with respect to Haar measure. Using Markov chain theory, we conduct a detailed analysis of random walks on homogeneous spaces with spread out increment distribution. For finite volume spaces, we arrive at a complete picture of the asymptotics of the n-step distributions: they equidistribute towards Haar measure, often exponentially fast and locally uniformly in the starting position. In addition, many classical limit theorems are shown to hold. In the infinite volume case, we prove recurrence and a ratio limit theorem for symmetric spread out random walks on homogeneous spaces of at most quadratic growth. This settles one direction in a long-standing conjecture.
Consider an ergodic Markov chain on a countable state space for which the return times have exponential tails. We show that the stationary version of any such chain is a finitary factor of an independent and identically distributed (i.i.d.) process. A key step is to show that any stationary renewal process whose jump distribution has exponential tails and is not supported on a proper subgroup of
${\mathbb {Z}}$
is a finitary factor of an i.i.d. process.
We provide a new proof of the existence of Gibbs point processes with infinite range interactions, based on the compactness of entropy levels. Our main existence theorem holds under two assumptions. The first one is the standard stability assumption, which means that the energy of any finite configuration is superlinear with respect to the number of points. The second assumption is the so-called intensity regularity, which controls the long range of the interaction via the intensity of the process. This assumption is new and introduced here since it is well adapted to the entropy approach. As a corollary of our main result we improve the existence results by Ruelle (1970) for pairwise interactions by relaxing the superstabilty assumption. Note that our setting is not reduced to pairwise interaction and can contain infinite-range multi-body counterparts.
We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals arising in stochastic geometry. As a consequence, we provide almost sure central limit theorems for (i) the total edge length of the k-nearest neighbors random graph, (ii) the clique count in random geometric graphs, and (iii) the volume of the set approximation via the Poisson–Voronoi tessellation.
We discuss a continuous-time Markov branching model in which each individual can trigger an alarm according to a Poisson process. The model is stopped when a given number of alarms is triggered or when there are no more individuals present. Our goal is to determine the distribution of the state of the population at this stopping time. In addition, the state distribution at any fixed time is also obtained. The model is then modified to take into account the possible influence of death cases. All distributions are derived using probability-generating functions, and the approach followed is based on the construction of families of martingales.
We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation, we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a U-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such U-statistics of the Gibbs particle process. A by-product of our approach is a new uniqueness result for Gibbs particle processes.
We consider the generalization of the Pólya urn scheme with possibly infinitely many colors, as introduced in [37], [4], [5], and [6]. For countably many colors, we prove almost sure convergence of the urn configuration under the uniform ergodicity assumption on the associated Markov chain. The proof uses a stochastic coupling of the sequence of chosen colors with a branching Markov chain on a weighted random recursive tree as described in [6], [31], and [26]. Using this coupling we estimate the covariance between any two selected colors. In particular, we re-prove the limit theorem for the classical urn models with finitely many colors.
This article investigates the long-time behavior of conservative affine processes on the cone of symmetric positive semidefinite
$d\times d$
matrices. In particular, for conservative and subcritical affine processes we show that a finite
$\log$
-moment of the state-independent jump measure is sufficient for the existence of a unique limit distribution. Moreover, we study the convergence rate of the underlying transition kernel to the limit distribution: first, in a specific metric induced by the Laplace transform, and second, in the Wasserstein distance under a first moment assumption imposed on the state-independent jump measure and an additional condition on the diffusion parameter.
In this paper, we consider functional limit theorems for Poisson cluster processes. We first present a maximal inequality for Poisson cluster processes. Then we establish a functional central limit theorem under the second moment and a functional moderate deviation principle under the Cramér condition for Poisson cluster processes. We apply these results to obtain a functional moderate deviation principle for linear Hawkes processes.
Suppose k balls are dropped into n boxes independently with uniform probability, where n, k are large with ratio approximately equal to some positive real
$\lambda$
. The maximum box count has a counterintuitive behavior: first of all, with high probability it takes at most two values
$m_n$
or
$m_n+1$
, where
$m_n$
is roughly
$\frac{\ln n}{\ln \ln n}$
. Moreover, it oscillates between these two values with an unusual periodicity. In order to prove this statement and various generalizations, it is first shown that for
$X_1,\ldots,X_n$
independent and identically distributed discrete random variables with common distribution F, under mild conditions, the limiting distribution of their maximum oscillates in three possible families, depending on the tail of the distribution. The result stated at the beginning follows from the ensemble equivalence for the order statistics in various allocations problems, obtained via conditioning limit theory. Results about the number of ties for the maximum, as well as applications, are also provided.
We investigate the Hawkes processes on the positive real line exhibiting both self-excitation and inhibition. Each point of such a point process impacts its future intensity by the addition of a signed reproduction function. The case of a nonnegative reproduction function corresponds to self-excitation, and has been widely investigated in the literature. In particular, there exists a cluster representation of the Hawkes process which allows one to apply known results for Galton–Watson trees. We use renewal techniques to establish limit theorems for Hawkes processes that have reproduction functions which are signed and have bounded support. Notably, we prove exponential concentration inequalities, extending results of Reynaud-Bouret and Roy (2006) previously proven for nonnegative reproduction functions using a cluster representation no longer valid in our case. Importantly, we establish the existence of exponential moments for renewal times of M/G/$\infty$ queues which appear naturally in our problem. These results possess interest independent of the original problem.
Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying Brownian motion B by Skorokhod embedding, one can show $L_2$-convergence of the corresponding solutions $(Y^n,Z^n)$ to $(Y, Z).$ We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in $C^{2,\alpha}$. The proof relies on an approximative representation of $Z^n$ and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods.
In a classical, continuous-time, optimal stopping problem, the agent chooses the best time to stop a stochastic process in order to maximise the expected discounted return. The agent can choose when to stop, and if at any moment they decide to stop, stopping occurs immediately with probability one. However, in many settings this is an idealistic oversimplification. Following Strack and Viefers we consider a modification of the problem in which stopping occurs at a rate which depends on the relative values of stopping and continuing: there are several different solutions depending on how the value of continuing is calculated. Initially we consider the case where stopping opportunities are constrained to be event times of an independent Poisson process. Motivated by the limiting case as the rate of the Poisson process increases to infinity, we also propose a continuous-time formulation of the problem where stopping can occur at any instant.
We establish a fundamental property of bivariate Pareto records for independent observations uniformly distributed in the unit square. We prove that the asymptotic conditional distribution of the number of records broken by an observation given that the observation sets a record is Geometric with parameter 1/2.
We characterize the second order subexponentiality of an infinitely divisible distribution on the real line under an exponential moment assumption. We investigate the asymptotic behaviour of the difference between the tails of an infinitely divisible distribution and its Lévy measure. Moreover, we study the second order asymptotic behaviour of the tail of the $t$th convolution power of an infinitely divisible distribution. The density version for a self-decomposable distribution on the real line without an exponential moment assumption is also given. Finally, the regularly varying case for a self-decomposable distribution on the half line is discussed.