To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove existence and uniqueness for the inverse-first-passage time problem for soft-killed Brownian motion using rather elementary methods relying on basic results from probability theory only. We completely avoid the relation to a suitable partial differential equation via a suitable Feynman–Kac representation, which was previously one of the main tools.
Consider a Brownian motion on the circumference of the unit circle, which jumps to the opposite point of the circumference at incident times of an independent Poisson process of rate $\lambda$. We examine the problem of coupling two copies of this ‘jumpy Brownian motion’ started from different locations, so as to optimise certain functions of the coupling time. We describe two intuitive co-adapted couplings (‘Mirror’ and ‘Synchronous’) which differ only when the two processes are directly opposite one another, and show that the question of which strategy is best depends upon the jump rate $\lambda$ in a non-trivial way. We also provide an explicit description of a (non-co-adapted) maximal coupling for any jump rate in the case that the two jumpy Brownian motions begin at antipodal points of the circle.
We use Stein’s method to establish the rates of normal approximation in terms of the total variation distance for a large class of sums of score functions of samples arising from random events driven by a marked Poisson point process on $\mathbb{R}^d$. As in the study under the weaker Kolmogorov distance, the score functions are assumed to satisfy stabilisation and moment conditions. At the cost of an additional non-singularity condition, we show that the rates are in line with those under the Kolmogorov distance. We demonstrate the use of the theorems in four applications: Voronoi tessellations, k-nearest-neighbours graphs, timber volume, and maximal layers.
We consider infinitely wide multi-layer perceptrons (MLPs) which are limits of standard deep feed-forward neural networks. We assume that, for each layer, the weights of an MLP are initialized with independent and identically distributed (i.i.d.) samples from either a light-tailed (finite-variance) or a heavy-tailed distribution in the domain of attraction of a symmetric $\alpha$-stable distribution, where $\alpha\in(0,2]$ may depend on the layer. For the bias terms of the layer, we assume i.i.d. initializations with a symmetric $\alpha$-stable distribution having the same $\alpha$ parameter as that layer. Non-stable heavy-tailed weight distributions are important since they have been empirically seen to emerge in trained deep neural nets such as the ResNet and VGG series, and proven to naturally arise via stochastic gradient descent. The introduction of heavy-tailed weights broadens the class of priors in Bayesian neural networks. In this work we extend a recent result of Favaro, Fortini, and Peluchetti (2020) to show that the vector of pre-activation values at all nodes of a given hidden layer converges in the limit, under a suitable scaling, to a vector of i.i.d. random variables with symmetric $\alpha$-stable distributions, $\alpha\in(0,2]$.
We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained, and the position at a given (constant) time of an exponentially tempered Lévy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\varepsilon^{-2}$ if the mean squared error is at most $\varepsilon^2$) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb principles guiding users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.
In this paper, we show that, with probability $1$, a random Beltrami field exhibits chaotic regions that coexist with invariant tori of complicated topologies. The motivation to consider this question, which arises in the study of stationary Euler flows in dimension 3, is V.I. Arnold’s 1965 speculation that a typical Beltrami field exhibits the same complexity as the restriction to an energy hypersurface of a generic Hamiltonian system with two degrees of freedom. The proof hinges on the obtention of asymptotic bounds for the number of horseshoes, zeros and knotted invariant tori and periodic trajectories that a Gaussian random Beltrami field exhibits, which we obtain through a nontrivial extension of the Nazarov–Sodin theory for Gaussian random monochromatic waves and the application of different tools from the theory of dynamical systems, including Kolmogorov–Arnold–Moser (KAM) theory, Melnikov analysis and hyperbolicity. Our results hold both in the case of Beltrami fields on ${\mathbb {R}}^3$ and of high-frequency Beltrami fields on the 3-torus.
We derive conditions for recurrence and transience for time-inhomogeneous birth-and-death processes considered as random walks with positively biased drifts. We establish a general result, from which the earlier known particular results by Menshikov and Volkov [‘Urn-related random walk with drift $\rho x^\alpha /t^\beta $’, Electron. J. Probab.13 (2008), 944–960] follow.
We adapt the classical definition of locally stationary processes in discrete time (see e.g. Dahlhaus, ‘Locally stationary processes’, in Time Series Analysis: Methods and Applications (2012)) to the continuous-time setting and obtain equivalent representations in the time and frequency domains. From this, a unique time-varying spectral density is derived using the Wigner–Ville spectrum. As an example, we investigate time-varying Lévy-driven state space processes, including the class of time-varying Lévy-driven CARMA processes. First, the connection between these two classes of processes is examined. Considering a sequence of time-varying Lévy-driven state space processes, we then give sufficient conditions on the coefficient functions that ensure local stationarity with respect to the given definition.
We define and study properties of implied volatility for American perpetual put options. In particular, we show that if the market prices are derived from a local volatility model with a monotone volatility function, then the corresponding implied volatility is also monotone as a function of the strike price.
This paper investigates properties of the class of graphs based on exchangeable point processes. We provide asymptotic expressions for the number of edges, number of nodes, and degree distributions, identifying four regimes: (i) a dense regime, (ii) a sparse, almost dense regime, (iii) a sparse regime with power-law behaviour, and (iv) an almost extremely sparse regime. We show that, under mild assumptions, both the global and local clustering coefficients converge to constants which may or may not be the same. We also derive a central limit theorem for subgraph counts and for the number of nodes. Finally, we propose a class of models within this framework where one can separately control the latent structure and the global sparsity/power-law properties of the graph.
Consider a financial market with nonnegative semimartingales which does not need to have a numéraire. We are interested in the absence of arbitrage in the sense that no self-financing portfolio gives rise to arbitrage opportunities, where we are allowed to add a savings account to the market. We will prove that in this sense the market is free of arbitrage if and only if there exists an equivalent local martingale deflator which is a multiplicative special semimartingale. In this case, the additional savings account relates to the finite-variation part of the multiplicative decomposition of the deflator.
We study the large-volume asymptotics of the sum of power-weighted edge lengths $\sum_{e \in E}|e|^\alpha$ in Poisson-based spatial random networks. In the regime $\alpha > d$, we provide a set of sufficient conditions under which the upper-large-deviation asymptotics are characterized by a condensation phenomenon, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed, bidirected, and undirected variants of the k-nearest-neighbor graph, as well as suitable $\beta$-skeletons.
Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space.
Following Bradonjić and Saniee, we study a model of bootstrap percolation on the Gilbert random geometric graph on the 2-dimensional torus. In this model, the expected number of vertices of the graph is n, and the expected degree of a vertex is $a\log n$ for some fixed $a>1$. Each vertex is added with probability p to a set $A_0$ of initially infected vertices. Vertices subsequently become infected if they have at least $ \theta a \log n $ infected neighbours. Here $p, \theta \in [0,1]$ are taken to be fixed constants.
We show that if $\theta < (1+p)/2$, then a sufficiently large local outbreak leads with high probability to the infection spreading globally, with all but o(n) vertices eventually becoming infected. On the other hand, for $ \theta > (1+p)/2$, even if one adversarially infects every vertex inside a ball of radius $O(\sqrt{\log n} )$, with high probability the infection will spread to only o(n) vertices beyond those that were initially infected.
In addition we give some bounds on the $(a, p, \theta)$ regions ensuring the emergence of large local outbreaks or the existence of islands of vertices that never become infected. We also give a complete picture of the (surprisingly complex) behaviour of the analogous 1-dimensional bootstrap percolation model on the circle. Finally we raise a number of problems, and in particular make a conjecture on an ‘almost no percolation or almost full percolation’ dichotomy which may be of independent interest.
Let $S=\{p_1, \ldots , p_r,\infty \}$ for prime integers $p_1, \ldots , p_r.$ Let X be an S-adic compact nilmanifold, equipped with the unique translation-invariant probability measure $\mu .$ We characterize the countable groups $\Gamma $ of automorphisms of X for which the Koopman representation $\kappa $ on $L^2(X,\mu )$ has a spectral gap. More specifically, let Y be the maximal quotient solenoid of X (thus, Y is a finite-dimensional, connected, compact abelian group). We show that $\kappa $ does not have a spectral gap if and only if there exists a $\Gamma $-invariant proper subsolenoid of Y on which $\Gamma $ acts as a virtually abelian group,
We consider a branching random walk on a d-ary tree of height n ($n \in \mathbb{N}$), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying $d\geqslant2$. We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of $\log n$.
We propose a new Kalikow decomposition for continuous-time multivariate counting processes, on potentially infinite networks. We prove the existence of such a decomposition in various cases. This decomposition allows us to derive simulation algorithms that hold either for stationary processes with potentially infinite network but bounded intensities, or for processes with unbounded intensities in a finite network and with empty past before zero. The Kalikow decomposition is not unique, and we discuss the choice of the decomposition in terms of algorithmic efficiency in certain cases. We apply these methods to several examples: the linear Hawkes process, the age-dependent Hawkes process, the exponential Hawkes process, and the Galves–Löcherbach process.
We prove that for a vast class of random walks on a compactly generated group, the exponential growth of convolutions of a probability density function along almost every sample path is bounded by the growth of the group. As an application, we show that the almost sure and $L^1$ convergences of the Shannon–McMillan–Breiman theorem hold for compactly supported random walks on compactly generated groups with subexponential growth.
An edge flipping is a non-reversible Markov chain on a given connected graph, as defined in Chung and Graham (2012). In the same paper, edge flipping eigenvalues and stationary distributions for some classes of graphs were identified. We further study edge flipping spectral properties to show a lower bound for the rate of convergence in the case of regular graphs. Moreover, we show by a coupling argument that a cutoff occurs at $\frac{1}{4} n \log n$ for the edge flipping on the complete graph.