To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, several linear two-dimensional consecutive k-type systems are studied, which include the linear connected-(k, r)-out-of-$(m,n)\colon\! F$ system and the linear l-connected-(k, r)-out-of-$(m,n)\colon\! F$ system without/with overlapping. Reliabilities of these systems are studied via the finite Markov chain imbedding approach (FMCIA) in a novel way. Some numerical examples are provided to illustrate the theoretical results established here and also to demonstrate the efficiency of the developed method. Finally, some possible applications and generalizations of the developed results are pointed out.
We demonstrate a quasipolynomial-time deterministic approximation algorithm for the partition function of a Gibbs point process interacting via a stable potential. This result holds for all activities $\lambda$ for which the partition function satisfies a zero-free assumption in a neighbourhood of the interval $[0,\lambda ]$. As a corollary, for all finiterange stable potentials, we obtain a quasipolynomial-time deterministic algorithm for all $\lambda \lt 1/(e^{B + 1} \hat C_\phi )$ where $\hat C_\phi$ is a temperedness parameter and $B$ is the stability constant of $\phi$. In the special case of a repulsive potential such as the hard-sphere gas we improve the range of activity by a factor of at least $e^2$ and obtain a quasipolynomial-time deterministic approximation algorithm for all $\lambda \lt e/\Delta _\phi$, where $\Delta _\phi$ is the potential-weighted connective constant of the potential $\phi$. Our algorithm approximates coefficients of the cluster expansion of the partition function and uses the interpolation method of Barvinok to extend this approximation throughout the zero-free region.
We extend the classical setting of an optimal stopping problem under full information to include problems with an unknown state. The framework allows the unknown state to influence (i) the drift of the underlying process, (ii) the payoff functions, and (iii) the distribution of the time horizon. Since the stopper is assumed to observe the underlying process and the random horizon, this is a two-source learning problem. Assigning a prior distribution for the unknown state, standard filtering theory can be employed to embed the problem in a Markovian framework with one additional state variable representing the posterior of the unknown state. We provide a convenient formulation of this Markovian problem, based on a measure change technique that decouples the underlying process from the new state variable. Moreover, we show by means of several novel examples that this reduced formulation can be used to solve problems explicitly.
We consider parallel single-server queues in heavy traffic with randomly split Hawkes arrival processes. The service times are assumed to be independent and identically distributed (i.i.d.) in each queue and are independent in different queues. In the critically loaded regime at each queue, it is shown that the diffusion-scaled queueing and workload processes converge to a multidimensional reflected Brownian motion in the non-negative orthant with orthonormal reflections. For the model with abandonment, we also show that the corresponding limit is a multidimensional reflected Ornstein–Uhlenbeck diffusion in the non-negative orthant.
We first introduce the concept of weak random periodic solutions of random dynamical systems. Then, we discuss the existence of such periodic solutions. Further, we introduce the definition of weak random periodic measures and study their relationship with weak random periodic solutions. In particular, we establish the existence of invariant measures of random dynamical systems by virtue of their weak random periodic solutions. We use concrete examples to illustrate the weak random periodic phenomena of dynamical systems induced by random and stochastic differential equations.
Let X be a d-dimensional diffusion and M the running supremum of its first component. In this paper, we show that for any $t>0,$ the density (with respect to the $(d+1)$-dimensional Lebesgue measure) of the pair $\big(M_t,X_t\big)$ is a weak solution of a Fokker–Planck partial differential equation on the closed set $\big\{(m,x)\in \mathbb{R}^{d+1},\,{m\geq x^1}\big\},$ using an integral expansion of this density.
Let G be a real Lie group, $\Lambda <G$ a lattice and $H\leqslant G$ a connected semisimple subgroup without compact factors and with finite center. We define the notion of H-expanding measures $\mu $ on H and, applying recent work of Eskin–Lindenstrauss, prove that $\mu $-stationary probability measures on $G/\Lambda $ are homogeneous. Transferring a construction by Benoist–Quint and drawing on ideas of Eskin–Mirzakhani–Mohammadi, we construct Lyapunov/Margulis functions to show that H-expanding random walks on $G/\Lambda $ satisfy a recurrence condition and that homogeneous subspaces are repelling. Combined with a countability result, this allows us to prove equidistribution of trajectories in $G/\Lambda $ for H-expanding random walks and to obtain orbit closure descriptions. Finally, elaborating on an idea of Simmons–Weiss, we deduce Birkhoff genericity of a class of measures with respect to some diagonal flows and extend their applications to Diophantine approximation on similarity fractals to a nonconformal and weighted setting.
We prove existence and uniqueness for the inverse-first-passage time problem for soft-killed Brownian motion using rather elementary methods relying on basic results from probability theory only. We completely avoid the relation to a suitable partial differential equation via a suitable Feynman–Kac representation, which was previously one of the main tools.
Consider a Brownian motion on the circumference of the unit circle, which jumps to the opposite point of the circumference at incident times of an independent Poisson process of rate $\lambda$. We examine the problem of coupling two copies of this ‘jumpy Brownian motion’ started from different locations, so as to optimise certain functions of the coupling time. We describe two intuitive co-adapted couplings (‘Mirror’ and ‘Synchronous’) which differ only when the two processes are directly opposite one another, and show that the question of which strategy is best depends upon the jump rate $\lambda$ in a non-trivial way. We also provide an explicit description of a (non-co-adapted) maximal coupling for any jump rate in the case that the two jumpy Brownian motions begin at antipodal points of the circle.
We use Stein’s method to establish the rates of normal approximation in terms of the total variation distance for a large class of sums of score functions of samples arising from random events driven by a marked Poisson point process on $\mathbb{R}^d$. As in the study under the weaker Kolmogorov distance, the score functions are assumed to satisfy stabilisation and moment conditions. At the cost of an additional non-singularity condition, we show that the rates are in line with those under the Kolmogorov distance. We demonstrate the use of the theorems in four applications: Voronoi tessellations, k-nearest-neighbours graphs, timber volume, and maximal layers.
We consider infinitely wide multi-layer perceptrons (MLPs) which are limits of standard deep feed-forward neural networks. We assume that, for each layer, the weights of an MLP are initialized with independent and identically distributed (i.i.d.) samples from either a light-tailed (finite-variance) or a heavy-tailed distribution in the domain of attraction of a symmetric $\alpha$-stable distribution, where $\alpha\in(0,2]$ may depend on the layer. For the bias terms of the layer, we assume i.i.d. initializations with a symmetric $\alpha$-stable distribution having the same $\alpha$ parameter as that layer. Non-stable heavy-tailed weight distributions are important since they have been empirically seen to emerge in trained deep neural nets such as the ResNet and VGG series, and proven to naturally arise via stochastic gradient descent. The introduction of heavy-tailed weights broadens the class of priors in Bayesian neural networks. In this work we extend a recent result of Favaro, Fortini, and Peluchetti (2020) to show that the vector of pre-activation values at all nodes of a given hidden layer converges in the limit, under a suitable scaling, to a vector of i.i.d. random variables with symmetric $\alpha$-stable distributions, $\alpha\in(0,2]$.
We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained, and the position at a given (constant) time of an exponentially tempered Lévy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\varepsilon^{-2}$ if the mean squared error is at most $\varepsilon^2$) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb principles guiding users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.
In this paper, we show that, with probability $1$, a random Beltrami field exhibits chaotic regions that coexist with invariant tori of complicated topologies. The motivation to consider this question, which arises in the study of stationary Euler flows in dimension 3, is V.I. Arnold’s 1965 speculation that a typical Beltrami field exhibits the same complexity as the restriction to an energy hypersurface of a generic Hamiltonian system with two degrees of freedom. The proof hinges on the obtention of asymptotic bounds for the number of horseshoes, zeros and knotted invariant tori and periodic trajectories that a Gaussian random Beltrami field exhibits, which we obtain through a nontrivial extension of the Nazarov–Sodin theory for Gaussian random monochromatic waves and the application of different tools from the theory of dynamical systems, including Kolmogorov–Arnold–Moser (KAM) theory, Melnikov analysis and hyperbolicity. Our results hold both in the case of Beltrami fields on ${\mathbb {R}}^3$ and of high-frequency Beltrami fields on the 3-torus.
We derive conditions for recurrence and transience for time-inhomogeneous birth-and-death processes considered as random walks with positively biased drifts. We establish a general result, from which the earlier known particular results by Menshikov and Volkov [‘Urn-related random walk with drift $\rho x^\alpha /t^\beta $’, Electron. J. Probab.13 (2008), 944–960] follow.
We adapt the classical definition of locally stationary processes in discrete time (see e.g. Dahlhaus, ‘Locally stationary processes’, in Time Series Analysis: Methods and Applications (2012)) to the continuous-time setting and obtain equivalent representations in the time and frequency domains. From this, a unique time-varying spectral density is derived using the Wigner–Ville spectrum. As an example, we investigate time-varying Lévy-driven state space processes, including the class of time-varying Lévy-driven CARMA processes. First, the connection between these two classes of processes is examined. Considering a sequence of time-varying Lévy-driven state space processes, we then give sufficient conditions on the coefficient functions that ensure local stationarity with respect to the given definition.
We define and study properties of implied volatility for American perpetual put options. In particular, we show that if the market prices are derived from a local volatility model with a monotone volatility function, then the corresponding implied volatility is also monotone as a function of the strike price.
This paper investigates properties of the class of graphs based on exchangeable point processes. We provide asymptotic expressions for the number of edges, number of nodes, and degree distributions, identifying four regimes: (i) a dense regime, (ii) a sparse, almost dense regime, (iii) a sparse regime with power-law behaviour, and (iv) an almost extremely sparse regime. We show that, under mild assumptions, both the global and local clustering coefficients converge to constants which may or may not be the same. We also derive a central limit theorem for subgraph counts and for the number of nodes. Finally, we propose a class of models within this framework where one can separately control the latent structure and the global sparsity/power-law properties of the graph.
Consider a financial market with nonnegative semimartingales which does not need to have a numéraire. We are interested in the absence of arbitrage in the sense that no self-financing portfolio gives rise to arbitrage opportunities, where we are allowed to add a savings account to the market. We will prove that in this sense the market is free of arbitrage if and only if there exists an equivalent local martingale deflator which is a multiplicative special semimartingale. In this case, the additional savings account relates to the finite-variation part of the multiplicative decomposition of the deflator.