To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X be a continuous-time strongly mixing or weakly dependent process and let T be a renewal process independent of X. We show general conditions under which the sampled process $(X_{T_i},T_i-T_{i-1})^{\top}$ is strongly mixing or weakly dependent. Moreover, we explicitly compute the strong mixing or weak dependence coefficients of the renewal sampled process and show that exponential or power decay of the coefficients of X is preserved (at least asymptotically). Our results imply that essentially all central limit theorems available in the literature for strongly mixing or weakly dependent processes can be applied when renewal sampled observations of the process X are at our disposal.
We study large-deviation probabilities of Telecom processes appearing as limits in a critical regime of the infinite-source Poisson model elaborated by I. Kaj and M. Taqqu. We examine three different regimes of large deviations (LD) depending on the deviation level. A Telecom process $(Y_t)_{t \ge 0}$ scales as $t^{1/\gamma}$, where t denotes time and $\gamma\in(1,2)$ is the key parameter of Y. We must distinguish moderate LD ${\mathbb P}(Y_t\ge y_t)$ with $t^{1/\gamma} \ll y_t \ll t$, intermediate LD with $ y_t \approx t$, and ultralarge LD with $ y_t \gg t$. The results we obtain essentially depend on another parameter of Y, namely the resource distribution. We solve completely the cases of moderate and intermediate LD (the latter being the most technical one), whereas the ultralarge deviation asymptotics is found for the case of regularly varying distribution tails. In all the cases considered, the large-deviation level is essentially reached by the minimal necessary number of ‘service processes’.
This article derives quantitative limit theorems for multivariate Poisson and Poisson process approximations. Employing the solution of the Stein equation for Poisson random variables, we obtain an explicit bound for the multivariate Poisson approximation of random vectors in the Wasserstein distance. The bound is then utilized in the context of point processes to provide a Poisson process approximation result in terms of a new metric called $d_\pi$, stronger than the total variation distance, defined as the supremum over all Wasserstein distances between random vectors obtained by evaluating the point processes on arbitrary collections of disjoint sets. As applications, the multivariate Poisson approximation of the sum of m-dependent Bernoulli random vectors, the Poisson process approximation of point processes of U-statistic structure, and the Poisson process approximation of point processes with Papangelou intensity are considered. Our bounds in $d_\pi$ are as good as those already available in the literature.
It was recently proven that the correlation function of the stationary version of a reflected Lévy process is nonnegative, nonincreasing, and convex. In another branch of the literature it was established that the mean value of the reflected process starting from zero is nondecreasing and concave. In the present paper it is shown, by putting them in a common framework, that these results extend to substantially more general settings. Indeed, instead of reflected Lévy processes, we consider a class of more general stochastically monotone Markov processes. In this setup we show monotonicity results associated with a supermodular function of two coordinates of our Markov process, from which the above-mentioned monotonicity and convexity/concavity results directly follow, but now for the class of Markov processes considered rather than just reflected Lévy processes. In addition, various results for the transient case (when the Markov process is not in stationarity) are provided. The conditions imposed are natural, in that they are satisfied by various frequently used Markovian models, as illustrated by a series of examples.
We study the geometric and topological features of U-statistics of order k when the k-tuples satisfying geometric and topological constraints do not occur frequently. Using appropriate scaling, we establish the convergence of U-statistics in vague topology, while the structure of a non-degenerate limit measure is also revealed. Our general result shows various limit theorems for geometric and topological statistics, including persistent Betti numbers of Čech complexes, the volume of simplices, a functional of the Morse critical points, and values of the min-type distance function. The required vague convergence can be obtained as a result of the limit theorem for point processes induced by U-statistics. The latter convergence particularly occurs in the $\mathcal M_0$-topology.
In this paper we study a class of optimal stopping problems under g-expectation, that is, the cost function is described by the solution of backward stochastic differential equations (BSDEs). Primarily, we assume that the reward process is $L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$-integrable with $\mu>\mu_0$ for some critical value $\mu_0$. This integrability is weaker than $L^p$-integrability for any $p>1$, so it covers a comparatively wide class of optimal stopping problems. To reach our goal, we introduce a class of reflected backward stochastic differential equations (RBSDEs) with $L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$-integrable parameters. We prove the existence, uniqueness, and comparison theorem for these RBSDEs under Lipschitz-type assumptions on the coefficients. This allows us to characterize the value function of our optimal stopping problem as the unique solution of such RBSDEs.
We consider a sequence of Poisson cluster point processes on $\mathbb{R}^d$: at step $n\in\mathbb{N}_0$ of the construction, the cluster centers have intensity $c/(n+1)$ for some $c>0$, and each cluster consists of the particles of a branching random walk up to generation n—generated by a point process with mean 1. We show that this ‘critical cluster cascade’ converges weakly, and that either the limit point process equals the void process (extinction), or it has the same intensity c as the critical cluster cascade (persistence). We obtain persistence if and only if the Palm version of the outgrown critical branching random walk is locally almost surely finite. This result allows us to give numerous examples for persistent critical cluster cascades.
In this paper, we study the optimal multiple stopping problem under the filtration-consistent nonlinear expectations. The reward is given by a set of random variables satisfying some appropriate assumptions, rather than a process that is right-continuous with left limits. We first construct the optimal stopping time for the single stopping problem, which is no longer given by the first hitting time of processes. We then prove by induction that the value function of the multiple stopping problem can be interpreted as the one for the single stopping problem associated with a new reward family, which allows us to construct the optimal multiple stopping times. If the reward family satisfies some strong regularity conditions, we show that the reward family and the value functions can be aggregated by some progressive processes. Hence, the optimal stopping times can be represented as hitting times.
In this paper, we investigate pigeonhole statistics for the fractional parts of the sequence $\sqrt {n}$. Namely, we partition the unit circle $ \mathbb {T} = \mathbb {R}/\mathbb {Z}$ into N intervals and show that the proportion of intervals containing exactly j points of the sequence $(\sqrt {n} + \mathbb {Z})_{n=1}^N$ converges in the limit as $N \to \infty $. More generally, we investigate how the limiting distribution of the first $sN$ points of the sequence varies with the parameter $s \geq 0$. A natural way to examine this is via point processes—random measures on $[0,\infty )$ which represent the arrival times of the points of our sequence to a random interval from our partition. We show that the sequence of point processes we obtain converges in distribution and give an explicit description of the limiting process in terms of random affine unimodular lattices. Our work uses ergodic theory in the space of affine unimodular lattices, building upon work of Elkies and McMullen [Gaps in $\sqrt {n}$ mod 1 and ergodic theory. Duke Math. J.123 (2004), 95–139]. We prove a generalisation of equidistribution of rational points on expanding horocycles in the modular surface, working instead on nonlinear horocycle sections.
Let $(\xi_k,\eta_k)_{k\in\mathbb{N}}$ be independent identically distributed random vectors with arbitrarily dependent positive components. We call a (globally) perturbed random walk a random sequence $T\,{:\!=}\, (T_k)_{k\in\mathbb{N}}$ defined by $T_k\,{:\!=}\, \xi_1+\cdots+\xi_{k-1}+\eta_k$ for $k\in\mathbb{N}$. Consider a general branching process generated by T and let $N_j(t)$ denote the number of the jth generation individuals with birth times $\leq t$. We treat early generations, that is, fixed generations j which do not depend on t. In this setting we prove counterparts for $\mathbb{E}N_j$ of the Blackwell theorem and the key renewal theorem, prove a strong law of large numbers for $N_j$, and find the first-order asymptotics for the variance of $N_j$. Also, we prove a functional limit theorem for the vector-valued process $(N_1(ut),\ldots, N_j(ut))_{u\geq0}$, properly normalized and centered, as $t\to\infty$. The limit is a vector-valued Gaussian process whose components are integrated Brownian motions.
In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman–Bucy filter estimates based upon several nonlinear Kalman–Bucy diffusions. Using new conditional bias results for the mean of the aforementioned methods, we analyze the empirical log-scale normalization constants in terms of their $\mathbb{L}_n$-errors and $\mathbb{L}_n$-conditional bias. Depending on the type of nonlinear Kalman–Bucy diffusion, we show that these are bounded above by terms such as $\mathsf{C}(n)\left[t^{1/2}/N^{1/2} + t/N\right]$ or $\mathsf{C}(n)/N^{1/2}$ ($\mathbb{L}_n$-errors) and $\mathsf{C}(n)\left[t+t^{1/2}\right]/N$ or $\mathsf{C}(n)/N$ ($\mathbb{L}_n$-conditional bias), where t is the time horizon, N is the ensemble size, and $\mathsf{C}(n)$ is a constant that depends only on n, not on N or t. Finally, we use these results for online static parameter estimation for the above filtering models and implement the methodology for both linear and nonlinear models.
We obtain series expansions of the q-scale functions of arbitrary spectrally negative Lévy processes, including processes with infinite jump activity, and use these to derive various new examples of explicit q-scale functions. Moreover, we study smoothness properties of the q-scale functions of spectrally negative Lévy processes with infinite jump activity. This complements previous results of Chan et al. (Prob. Theory Relat. Fields150, 2011) for spectrally negative Lévy processes with Gaussian component or bounded variation.
We propose a generalized Cramér–Lundberg model of the risk theory of non-life insurance and study its ruin probability. Our model is an extension of that of Dubey (1977) to the case of multiple insureds, where the counting process is a mixed Poisson process and the continuously varying premium rate is determined by a Bayesian rule on the number of claims. We use two proofs to show that, for each fixed value of the safety loading, the ruin probability is the same as that of the classical Cramér–Lundberg model and does not depend on either the distribution of the mixing variable of the driving mixed Poisson process or the number of claim contracts.
We analyse an additive-increase and multiplicative-decrease (also known as growth–collapse) process that grows linearly in time and that, at Poisson epochs, experiences downward jumps that are (deterministically) proportional to its present position. For this process, and also for its reflected versions, we consider one- and two-sided exit problems that concern the identification of the laws of exit times from fixed intervals and half-lines. All proofs are based on a unified first-step analysis approach at the first jump epoch, which allows us to give explicit, yet involved, formulas for their Laplace transforms. All eight Laplace transforms can be described in terms of two so-called scale functions associated with the upward one-sided exit time and with the upward two-sided exit time. All other Laplace transforms can be obtained from the above scale functions by taking limits, derivatives, integrals, and combinations of these.
We investigate expansions for connectedness functions in the random connection model of continuum percolation in powers of the intensity. Precisely, we study the pair-connectedness and the direct-connectedness functions, related to each other via the Ornstein–Zernike equation. We exhibit the fact that the coefficients of the expansions consist of sums over connected and 2-connected graphs. In the physics literature, this is known to be the case more generally for percolation models based on Gibbs point processes and stands in analogy to the formalism developed for correlation functions in liquid-state statistical mechanics.
We find a representation of the direct-connectedness function and bounds on the intensity which allow us to pass to the thermodynamic limit. In some cases (e.g., in high dimensions), the results are valid in almost the entire subcritical regime. Moreover, we relate these expansions to the physics literature and we show how they coincide with the expression provided by the lace expansion.
This paper investigates spatial data on the unit sphere. Traditionally, isotropic Gaussian random fields are considered as the underlying mathematical model of the cosmic microwave background (CMB) data. We discuss the generalized multifractional Brownian motion and its pointwise Hölder exponent on the sphere. The multifractional approach is used to investigate the CMB data from the Planck mission. These data consist of CMB radiation measurements at narrow angles of the sky sphere. The results obtained suggest that the estimated Hölder exponents for different CMB regions do change from location to location. Therefore, the CMB temperature intensities are multifractional. The methodology developed is used to suggest two approaches for detecting regions with anomalies in the cleaned CMB maps.
The Dagum family of isotropic covariance functions has two parameters that allow for decoupling of the fractal dimension and the Hurst effect for Gaussian random fields that are stationary and isotropic over Euclidean spaces. Sufficient conditions that allow for positive definiteness in $\mathbb{R}^d$ of the Dagum family have been proposed on the basis of the fact that the Dagum family allows for complete monotonicity under some parameter restrictions. The spectral properties of the Dagum family have been inspected to a very limited extent only, and this paper gives insight into this direction. Specifically, we study finite and asymptotic properties of the isotropic spectral density (intended as the Hankel transform) of the Dagum model. Also, we establish some closed-form expressions for the Dagum spectral density in terms of the Fox–Wright functions. Finally, we provide asymptotic properties for such a class of spectral densities.