To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate an optimal stopping problem for the expected value of a discounted payoff on a regime-switching geometric Brownian motion under two constraints on the possible stopping times: only at exogenous random times, and only during a specific regime. The main objectives are to show that an optimal stopping time exists as a threshold type and to derive expressions for the value functions and the optimal threshold. To this end, we solve the corresponding variational inequality and show that its solution coincides with the value functions. Some numerical results are also introduced. Furthermore, we investigate some asymptotic behaviors.
We present a detailed analysis of random motions moving in higher spaces with a natural number of velocities. In the case of the so-called minimal random dynamics, under some broad assumptions, we give the joint distribution of the position of the motion (for both the inner part and the boundary of the support) and the number of displacements performed with each velocity. Explicit results for cyclic and complete motions are derived. We establish useful relationships between motions moving in different spaces, and we derive the form of the distribution of the movements in arbitrary dimension. Finally, we investigate further properties for stochastic motions governed by non-homogeneous Poisson processes.
We consider the problem of obtaining effective representations for the solutions of linear, vector-valued stochastic differential equations (SDEs) driven by non-Gaussian pure-jump Lévy processes, and we show how such representations lead to efficient simulation methods. The processes considered constitute a broad class of models that find application across the physical and biological sciences, mathematics, finance, and engineering. Motivated by important relevant problems in statistical inference, we derive new, generalised shot-noise simulation methods whenever a normal variance-mean (NVM) mixture representation exists for the driving Lévy process, including the generalised hyperbolic, normal-gamma, and normal tempered stable cases. Simple, explicit conditions are identified for the convergence of the residual of a truncated shot-noise representation to a Brownian motion in the case of the pure Lévy process, and to a Brownian-driven SDE in the case of the Lévy-driven SDE. These results provide Gaussian approximations to the small jumps of the process under the NVM representation. The resulting representations are of particular importance in state inference and parameter estimation for Lévy-driven SDE models, since the resulting conditionally Gaussian structures can be readily incorporated into latent variable inference methods such as Markov chain Monte Carlo, expectation-maximisation, and sequential Monte Carlo.
We show that for arrival processes, the ‘harmonic new better than used in expectation’ (HNBUE) (or ‘harmonic new worse than used in expectation’, HNWUE) property is a sufficient condition for inequalities between the time and customer averages of the system if the state of the system between arrival epochs is stochastically decreasing and convex and the lack of anticipation assumption is satisfied. HNB(W)UE is a wider class than NB(W)UE, being the largest of all available classes of distributions with positive (negative) aging properties. Thus, this result represents an important step beyond existing result on inequalities between time and customer averages, which states that for arrival processes, the NB(W)UE property is a sufficient condition for inequalities.
This paper considers the first passage times to constant boundaries and the two-sided exit problem for Lévy process with a characteristic exponent in which at least one of the two jumps having rational Laplace transforms. The joint distribution of the first passage times and undershoot/overshoot are obtained. The processes recover many models that have appeared in the literature such as the compound Poisson risk models, the perturbed compound Poisson risk models, and their dual ones. As applications, we obtain the solutions for popular path-dependent options such as lookback and barrier options in terms of Laplace transforms.
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability of some random variables to a constant, and a weak convergence to a centered Gaussian distribution (when such random variables are properly centered and rescaled). We talk about noncentral moderate deviations when the weak convergence is towards a non-Gaussian distribution. In this paper we prove a noncentral moderate deviation result for the bivariate sequence of sums and maxima of independent and identically distributed random variables bounded from above. We also prove a result where the random variables are not bounded from above, and the maxima are suitably normalized. Finally, we prove a moderate deviation result for sums of partial minima of independent and identically distributed exponential random variables.
Centrality measures aim to indicate who is important in a network. Various notions of ‘being important’ give rise to different centrality measures. In this paper, we study how important the central vertices are for the connectivity structure of the network, by investigating how the removal of the most central vertices affects the number of connected components and the size of the giant component. We use local convergence techniques to identify the limiting number of connected components for locally converging graphs and centrality measures that depend on the vertex’s neighbourhood. For the size of the giant, we prove a general upper bound. For the matching lower bound, we specialise to the case of degree centrality on one of the most popular models in network science, the configuration model, for which we show that removal of the highest-degree vertices destroys the giant most.
In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $\nu $. We consider a class of non-square-integrable observables $\phi $, mostly of form $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$, where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $\alpha \in (0,2)$. The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $\alpha $, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by $\nu $. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.
We prove that the local time of random walks conditioned to stay positive converges to the corresponding local time of three-dimensional Bessel processes by proper scaling. Our proof is based on Tanaka’s pathwise construction for conditioned random walks and the derivation of asymptotics for mixed moments of the local time.
We consider Gaussian approximation in a variant of the classical Johnson–Mehl birth–growth model with random growth speed. Seeds appear randomly in $\mathbb{R}^d$ at random times and start growing instantaneously in all directions with a random speed. The locations, birth times, and growth speeds of the seeds are given by a Poisson process. Under suitable conditions on the random growth speed, the time distribution, and a weight function $h\;:\;\mathbb{R}^d \times [0,\infty) \to [0,\infty)$, we prove a Gaussian convergence of the sum of the weights at the exposed points, which are those seeds in the model that are not covered at the time of their birth. Such models have previously been considered, albeit with fixed growth speed. Moreover, using recent results on stabilization regions, we provide non-asymptotic bounds on the distance between the normalized sum of weights and a standard Gaussian random variable in the Wasserstein and Kolmogorov metrics.
We consider the propagation of a stochastic SIR-type epidemic in two connected populations: a relatively small local population of interest which is surrounded by a much larger external population. External infectives can temporarily enter the small population and contribute to the spread of the infection inside this population. The rules for entry of infectives into the small population as well as their length of stay are modeled by a general Markov queueing system. Our main objective is to determine the distribution of the total number of infections within both populations. To do this, the approach we propose consists of deriving a family of martingales for the joint epidemic processes and applying classical stopping time or convergence theorems. The study then focuses on several particular cases where the external infection is described by a linear branching process and the entry of external infectives obeys certain specific rules. Some of the results obtained are illustrated by numerical examples.
This paper examines the issue of derivative pricing within the framework of a fractional stochastic volatility model. We present a deterministic partial differential equation system to derive an approximate expression for the derivative price. The proposed approach allows for the stochastic volatility to be expressed as a composition of deterministic functions of time and a fractional Ornstein–Uhlenbeck process. We apply this method to the European option pricing under the fractional Stein–Stein volatility model, demonstrating its feasibility and reliability through numerical simulations. Our numerical simulations also illustrate the impact of the parameters in the fractional stochastic volatility model on the option price.
Graphical models with heavy-tailed factors can be used to model extremal dependence or causality between extreme events. In a Bayesian network, variables are recursively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graph, which we call a tree of transitive tournaments. The latter is a block graph combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into independent increments along the shortest trail between two variables, thereby imitating the behaviour of a Markov random field.
We are also interested in the identifiability of the model parameters in the case when some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.
We study three classes of shock models governed by an inverse gamma mixed Poisson process (IGMP), namely a mixed Poisson process with an inverse gamma mixing distribution. In particular, we analyze (1) the extreme shock model, (2) the δ-shock model, and the (3) cumulative shock model. For the latter, we assume a constant and an exponentially distributed random threshold and consider different choices for the distribution of the amount of damage caused by a single shock. For all the treated cases, we obtain the survival function, together with the expected value and the variance of the failure time. Some properties of the inverse gamma mixed Poisson process are also disclosed.
We study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, $\mathbb{X}_t$ converges weakly. As a consequence, we obtain a limit theorem for the order statistics of $\mathbb{X}_t$.
We continue with the systematic study of the speed of extinction of continuous-state branching processes in Lévy environments under more general branching mechanisms. Here, we deal with the weakly subcritical regime under the assumption that the branching mechanism is regularly varying. We extend recent results of Li and Xu (2018) and Palau et al. (2016), where it is assumed that the branching mechanism is stable, and complement the recent articles of Bansaye et al. (2021) and Cardona-Tobón and Pardo (2021), where the critical and the strongly and intermediate subcritical cases were treated, respectively. Our methodology combines a path analysis of the branching process together with its Lévy environment, fluctuation theory for Lévy processes, and the asymptotic behaviour of exponential functionals of Lévy processes. Our approach is inspired by the last two previously cited papers, and by Afanasyev et al. (2012), where the analogue was obtained.
We consider the minimum spanning tree problem on a weighted complete bipartite graph $K_{n_R, n_B}$ whose $n=n_R+n_B$ vertices are random, i.i.d. uniformly distributed points in the unit cube in $d$ dimensions and edge weights are the $p$-th power of their Euclidean distance, with $p\gt 0$. In the large $n$ limit with $n_R/n \to \alpha _R$ and $0\lt \alpha _R\lt 1$, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on $d$ only. Despite this difference, for $p\lt d$, we are able to prove that the total edge costs normalized by the rate $n^{1-p/d}$ converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.
The switch process alternates independently between 1 and $-1$, with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
In this paper, we time-change the generalized counting process (GCP) by an independent inverse mixed stable subordinator to obtain a fractional version of the GCP. We call it the mixed fractional counting process (MFCP). The system of fractional differential equations that governs its state probabilities is obtained using the Z transform method. Its one-dimensional distribution, mean, variance, covariance, probability generating function, and factorial moments are obtained. It is shown that the MFCP exhibits the long-range dependence property whereas its increment process has the short-range dependence property. As an application we consider a risk process in which the claims are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour of its finite-time ruin probability when the claim sizes are subexponentially distributed and the initial capital is arbitrarily large. Later, we discuss some distributional properties of a compound version of the GCP.