To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Graphical models with heavy-tailed factors can be used to model extremal dependence or causality between extreme events. In a Bayesian network, variables are recursively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graph, which we call a tree of transitive tournaments. The latter is a block graph combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into independent increments along the shortest trail between two variables, thereby imitating the behaviour of a Markov random field.
We are also interested in the identifiability of the model parameters in the case when some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.
We study three classes of shock models governed by an inverse gamma mixed Poisson process (IGMP), namely a mixed Poisson process with an inverse gamma mixing distribution. In particular, we analyze (1) the extreme shock model, (2) the δ-shock model, and the (3) cumulative shock model. For the latter, we assume a constant and an exponentially distributed random threshold and consider different choices for the distribution of the amount of damage caused by a single shock. For all the treated cases, we obtain the survival function, together with the expected value and the variance of the failure time. Some properties of the inverse gamma mixed Poisson process are also disclosed.
We study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, $\mathbb{X}_t$ converges weakly. As a consequence, we obtain a limit theorem for the order statistics of $\mathbb{X}_t$.
We continue with the systematic study of the speed of extinction of continuous-state branching processes in Lévy environments under more general branching mechanisms. Here, we deal with the weakly subcritical regime under the assumption that the branching mechanism is regularly varying. We extend recent results of Li and Xu (2018) and Palau et al. (2016), where it is assumed that the branching mechanism is stable, and complement the recent articles of Bansaye et al. (2021) and Cardona-Tobón and Pardo (2021), where the critical and the strongly and intermediate subcritical cases were treated, respectively. Our methodology combines a path analysis of the branching process together with its Lévy environment, fluctuation theory for Lévy processes, and the asymptotic behaviour of exponential functionals of Lévy processes. Our approach is inspired by the last two previously cited papers, and by Afanasyev et al. (2012), where the analogue was obtained.
We consider the minimum spanning tree problem on a weighted complete bipartite graph $K_{n_R, n_B}$ whose $n=n_R+n_B$ vertices are random, i.i.d. uniformly distributed points in the unit cube in $d$ dimensions and edge weights are the $p$-th power of their Euclidean distance, with $p\gt 0$. In the large $n$ limit with $n_R/n \to \alpha _R$ and $0\lt \alpha _R\lt 1$, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on $d$ only. Despite this difference, for $p\lt d$, we are able to prove that the total edge costs normalized by the rate $n^{1-p/d}$ converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.
The switch process alternates independently between 1 and $-1$, with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
In this paper, we time-change the generalized counting process (GCP) by an independent inverse mixed stable subordinator to obtain a fractional version of the GCP. We call it the mixed fractional counting process (MFCP). The system of fractional differential equations that governs its state probabilities is obtained using the Z transform method. Its one-dimensional distribution, mean, variance, covariance, probability generating function, and factorial moments are obtained. It is shown that the MFCP exhibits the long-range dependence property whereas its increment process has the short-range dependence property. As an application we consider a risk process in which the claims are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour of its finite-time ruin probability when the claim sizes are subexponentially distributed and the initial capital is arbitrarily large. Later, we discuss some distributional properties of a compound version of the GCP.
Inaccuracy and information measures based on cumulative residual entropy are quite useful and have received considerable attention in many fields, such as statistics, probability, and reliability theory. In particular, many authors have studied cumulative residual inaccuracy between coherent systems based on system lifetimes. In a previous paper (Bueno and Balakrishnan, Prob. Eng. Inf. Sci.36, 2022), we discussed a cumulative residual inaccuracy measure for coherent systems at component level, that is, based on the common, stochastically dependent component lifetimes observed under a non-homogeneous Poisson process. In this paper, using a point process martingale approach, we extend this concept to a cumulative residual inaccuracy measure between non-explosive point processes and then specialize the results to Markov occurrence times. If the processes satisfy the proportional risk hazard process property, then the measure determines the Markov chain uniquely. Several examples are presented, including birth-and-death processes and pure birth process, and then the results are applied to coherent systems at component level subject to Markov failure and repair processes.
Let $f(z)=\sum\limits_{j=0}^{\infty} a_j z^j$ be a transcendental entire function and let $f_\omega(z)=\sum\limits_{j=0}^{\infty}\chi_j(\omega) a_j z^j$ be a random entire function, where $\chi_j(\omega)$ are independent and identically distributed random variables defined on a probability space $(\Omega, \mathcal{F}, \mu)$. In this paper, we first define a family of random entire functions, which includes Gaussian, Rademacher and Steinhaus entire functions. We prove that, for almost all functions in the family and for any constant C > 1, there exist a constant $r_0=r_0(\omega)$ and a set $E\subset [e, \infty)$ of finite logarithmic measure such that, for $r \gt r_0$ and $r\notin E$,
where $A, B$ are constants, $M(r, f)$ is the maximum modulus and $N(r, 0, f)$ is the integrated zero-counting function of f. As a by-product of our main results, we prove Nevanlinna’s second main theorem for random entire functions. Thus, the characteristic function of almost all functions in the family is bounded above by an integrated counting function, rather than by two integrated counting functions as in the classical Nevanlinna theory. For instance, we show that, for almost all Gaussian entire functions fω and for any ϵ > 0, there is r0 such that, for $r \gt r_0$,
Consider a well-shuffled deck of cards of n different types where each type occurs m times. In a complete feedback game, a player is asked to guess the top card from the deck. After each guess, the top card is revealed to the player and is removed from the deck. The total number of correct guesses in a complete feedback game has attracted significant interest in the past few decades. Under different regimes of m, n, the expected number of correct guesses, under the greedy (optimal) strategy, has been obtained by various authors, while there are not many results available about the fluctuations. In this paper we establish a central limit theorem with Berry–Esseen bounds when m is fixed and n is large. Our results extend to the case of decks where different types may have different multiplicity, under suitable assumptions.
In the classical gambler’s ruin problem, the gambler plays an adversary with initial capitals z and $a-z$, respectively, where $a>0$ and $0< z < a$ are integers. At each round, the gambler wins or loses a dollar with probabilities p and $1-p$. The game continues until one of the two players is ruined. For even a and $0<z\leq {a}/{2}$, the family of distributions of the duration (total number of rounds) of the game indexed by $p \in [0,{\frac{1}{2}}]$ is shown to have monotone (increasing) likelihood ratio, while for ${a}/{2} \leq z<a$, the family of distributions of the duration indexed by $p \in [{\frac{1}{2}}, 1]$ has monotone (decreasing) likelihood ratio. In particular, for $z={a}/{2}$, in terms of the likelihood ratio order, the distribution of the duration is maximized over $p \in [0,1]$ by $p={\frac{1}{2}}$. The case of odd a is also considered in terms of the usual stochastic order. Furthermore, as a limit, the first exit time of Brownian motion is briefly discussed.
Candidates arrive sequentially for an interview process which results in them being ranked relative to their predecessors. Based on the ranks available at each time, a decision mechanism must be developed that selects or dismisses the current candidate in an effort to maximize the chance of selecting the best. This classical version of the ‘secretary problem’ has been studied in depth, mostly using combinatorial approaches, along with numerous other variants. We consider a particular new version where, during reviewing, it is possible to query an external expert to improve the probability of making the correct decision. Unlike existing formulations, we consider experts that are not necessarily infallible and may provide suggestions that can be faulty. For the solution of our problem we adopt a probabilistic methodology and view the querying times as consecutive stopping times which we optimize with the help of optimal stopping theory. For each querying time we must also design a mechanism to decide whether or not we should terminate the search at the querying time. This decision is straightforward under the usual assumption of infallible experts, but when experts are faulty it has a far more intricate structure.
For an n-element subset U of $\mathbb {Z}^2$, select x from U according to harmonic measure from infinity, remove x from U and start a random walk from x. If the walk leaves from y when it first enters the rest of U, add y to it. Iterating this procedure constitutes the process we call harmonic activation and transport (HAT).
HAT exhibits a phenomenon we refer to as collapse: Informally, the diameter shrinks to its logarithm over a number of steps which is comparable to this logarithm. Collapse implies the existence of the stationary distribution of HAT, where configurations are viewed up to translation, and the exponential tightness of diameter at stationarity. Additionally, collapse produces a renewal structure with which we establish that the center of mass process, properly rescaled, converges in distribution to two-dimensional Brownian motion.
To characterize the phenomenon of collapse, we address fundamental questions about the extremal behavior of harmonic measure and escape probabilities. Among n-element subsets of $\mathbb {Z}^2$, what is the least positive value of harmonic measure? What is the probability of escape from the set to a distance of, say, d? Concerning the former, examples abound for which the harmonic measure is exponentially small in n. We prove that it can be no smaller than exponential in $n \log n$. Regarding the latter, the escape probability is at most the reciprocal of $\log d$, up to a constant factor. We prove it is always at least this much, up to an n-dependent factor.
In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $\unicode{x2124}$: in this model, the probability that the walk moves from a point of $\unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.
We analyze the long-term stability of a stochastic model designed to illustrate the adaptation of a population to variation in its environment. A piecewise deterministic process modeling adaptation is coupled to a Feller logistic diffusion modeling population size. As the individual features in the population become further away from the optimal ones, the growth rate declines, making population extinction more likely. Assuming that the environment changes deterministically and steadily in a constant direction, we obtain the existence and uniqueness of the quasi-stationary distribution, the associated survival capacity, and the Q-process. Our approach also provides several exponential convergence results (in total variation for the measures). From this synthetic information, we can characterize the efficiency of internal adaptation (i.e. population turnover from mutant invasions). When the latter is lacking, there is still stability, but because of the high level of population extinction. Therefore, any characterization of internal adaptation should be based on specific features of this quasi-ergodic regime rather than the mere existence of the regime itself.
Extreme value theory plays an important role in providing approximation results for the extremes of a sequence of independent random variables when their distribution is unknown. An important one is given by the generalised Pareto distribution $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold t, where s(t) is a suitable norming function. We study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback–Leibler divergence between the respective densities.
Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment $\{Z_n\}$ whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points $\{(\tau_j, \nu_j)\}$—specifically the values of the process at crossing times, viz. $\{(Z_{\tau_j}, Z_{\nu_j})\}$—along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.
Consider the following migration process based on a closed network of N queues with $K_N$ customers. Each station is a $\cdot$/M/$\infty$ queue with service (or migration) rate $\mu$. Upon departure, a customer is routed independently and uniformly at random to another station. In addition to migration, these customers are subject to a susceptible–infected–susceptible (SIS) dynamics. That is, customers are in one of two states: I for infected, or S for susceptible. Customers can swap their state either from I to S or from S to I only in stations. More precisely, at any station, each susceptible customer becomes infected with the instantaneous rate $\alpha Y$ if there are Y infected customers in the station, whereas each infected customer recovers and becomes susceptible with rate $\beta$. We let N tend to infinity and assume that $\lim_{N\to \infty} K_N/N= \eta $, where $\eta$ is a positive constant representing the customer density. The main problem of interest concerns the set of parameters of such a system for which there exists a stationary regime where the epidemic survives in the limiting system. The latter limit will be referred to as the thermodynamic limit. We use coupling and stochastic monotonicity arguments to establish key properties of the associated Markov processes, which in turn allow us to give the structure of the phase transition diagram of this thermodynamic limit with respect to $\eta$. The analysis of the Kolmogorov equations of this SIS model reduces to that of a wave-type PDE for which we have found no explicit solution. This plain SIS model is one among several companion stochastic processes that exhibit both random migration and contagion. Two of them are discussed in the present paper as they provide variants to the plain SIS model as well as some bounds and approximations. These two variants are the departure-on-change-of-state (DOCS) model and the averaged-infection-rate (AIR) model, which both admit closed-form solutions. The AIR system is a classical mean-field model where the infection mechanism based on the actual population of infected customers is replaced by a mechanism based on some empirical average of the number of infected customers in all stations. The latter admits a product-form solution. DOCS features accelerated migration in that each change of SIS state implies an immediate departure. This model leads to another wave-type PDE that admits a closed-form solution. In this text, the main focus is on the closed stochastic networks and their limits. The open systems consisting of a single station with Poisson input are instrumental in the analysis of the thermodynamic limits and are also of independent interest. This class of SIS dynamics has incarnations in virtually all queueing networks of the literature.
We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential $V$, (ii) Fisher–Hartwig singularities and (iii) a smooth function in the background. The potential $V$ is associated with an equilibrium measure that is assumed to be supported on the whole unit circle. For constant potentials $V$, the equilibrium measure is the uniform measure on the unit circle and our formulas reduce to well-known results for Toeplitz determinants with Fisher–Hartwig singularities. For non-constant $V$, our results appear to be new even in the case of no Fisher–Hartwig singularities. As applications of our results, we derive various statistical properties of a determinantal point process which generalizes the circular unitary ensemble.