We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider Markov processes that alternate continuous motions and jumps in a general locally compact Polish space. Starting from a mechanistic construction, a first contribution of this article is to provide conditions on the dynamics so that the associated transition kernel forms a Feller semigroup, and to deduce the corresponding infinitesimal generator. As a second contribution, we investigate the ergodic properties in the special case where the jumps consist of births and deaths, a situation observed in several applications including epidemiology, ecology, and microbiology. Based on a coupling argument, we obtain conditions for convergence to a stationary measure with a geometric rate of convergence. Throughout the article, we illustrate our results using general examples of systems of interacting particles in $\mathbb{R}^d$ with births and deaths. We show that in some cases the stationary measure can be made explicit and corresponds to a Gibbs measure on a compact subset of $\mathbb{R}^d$. Our examples include in particular Gibbs measures associated to repulsive Lennard-Jones potentials and to Riesz potentials.
Persistent Betti numbers are a major tool in persistent homology, a subfield of topological data analysis. Many tools in persistent homology rely on the properties of persistent Betti numbers considered as a two-dimensional stochastic process $ (r,s) \mapsto n^{-1/2} (\beta^{r,s}_q ( \mathcal{K}(n^{1/d} \mathcal{X}_n))-\mathbb{E}[\beta^{r,s}_q ( \mathcal{K}( n^{1/d} \mathcal{X}_n))])$. So far, pointwise limit theorems have been established in various settings. In particular, the pointwise asymptotic normality of (persistent) Betti numbers has been established for stationary Poisson processes and binomial processes with constant intensity function in the so-called critical (or thermodynamic) regime; see Yogeshwaran et al. (Prob. Theory Relat. Fields167, 2017) and Hiraoka et al. (Ann. Appl. Prob.28, 2018).
In this contribution, we derive a strong stabilization property (in the spirit of Penrose and Yukich, Ann. Appl. Prob.11, 2001) of persistent Betti numbers, and we generalize the existing results on their asymptotic normality to the multivariate case and to a broader class of underlying Poisson and binomial processes. Most importantly, we show that multivariate asymptotic normality holds for all pairs (r, s), $0\le r\le s<\infty$, and that it is not affected by percolation effects in the underlying random geometric graph.
We present a closed-form solution to a discounted optimal stopping zero-sum game in a model based on a generalised geometric Brownian motion with coefficients depending on its running maximum and minimum processes. The optimal stopping times forming a Nash equilibrium are shown to be the first times at which the original process hits certain boundaries depending on the running values of the associated maximum and minimum processes. The proof is based on the reduction of the original game to the equivalent coupled free-boundary problem and the solution of the latter problem by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are partially determined as either unique solutions to the appropriate system of arithmetic equations or unique solutions to the appropriate first-order nonlinear ordinary differential equations. The results obtained are related to the valuation of the perpetual lookback game options with floating strikes in the appropriate diffusion-type extension of the Black–Merton–Scholes model.
This paper studies a novel Brownian functional defined as the supremum of a weighted average of the running Brownian range and its running reversal from extrema on the unit interval. We derive the Laplace transform for the squared reciprocal of this functional, which leads to explicit moment expressions that are new to the literature. We show that the proposed Brownian functional can be used to estimate the spot volatility of financial returns based on high-frequency price observations.
We derive some key extremal features for stationary kth-order Markov chains that can be used to understand how the process moves between an extreme state and the body of the process. The chains are studied given that there is an exceedance of a threshold, as the threshold tends to the upper endpoint of the distribution. Unlike previous studies with $k>1$, we consider processes where standard limit theory describes each extreme event as a single observation without any information about the transition to and from the body of the distribution. Our work uses different asymptotic theory which results in non-degenerate limit laws for such processes. We study the extremal properties of the initial distribution and the transition probability kernel of the Markov chain under weak assumptions for broad classes of extremal dependence structures that cover both asymptotically dependent and asymptotically independent Markov chains. For chains with $k>1$, the transition of the chain away from the exceedance involves novel functions of the k previous states, in comparison to just the single value, when $k=1$. This leads to an increase in the complexity of determining the form of this class of functions, their properties, and the method of their derivation in applications. We find that it is possible to derive an affine normalization, dependent on the threshold excess, such that non-degenerate limiting behaviour of the process, in the neighbourhood of the threshold excess, is assured for all lags. We find that these normalization functions have an attractive structure that has parallels to the Yule–Walker equations. Furthermore, the limiting process is always linear in the innovations. We illustrate the results with the study of kth-order stationary Markov chains with exponential margins based on widely studied families of copula dependence structures.
Consider a branching random walk on the real line with a random environment in time (BRWRE). A necessary and sufficient condition for the non-triviality of the limit of the derivative martingale is formulated. To this end, we investigate the random walk in a time-inhomogeneous random environment (RWRE), which is related to the BRWRE by the many-to-one formula. The key step is to figure out Tanaka’s decomposition for the RWRE conditioned to stay non-negative (or above a line), which is interesting in itself.
In this article, we give explicit bounds on the Wasserstein and Kolmogorov distances between random variables lying in the first chaos of the Poisson space and the standard normal distribution, using the results of Last et al. (Prob. Theory Relat. Fields165, 2016). Relying on the theory developed by Saulis and Statulevicius in Limit Theorems for Large Deviations (Kluwer, 1991) and on a fine control of the cumulants of the first chaoses, we also derive moderate deviation principles, Bernstein-type concentration inequalities, and normal approximation bounds with Cramér correction terms for the same variables. The aforementioned results are then applied to Poisson shot noise processes and, in particular, to the generalized compound Hawkes point processes (a class of stochastic models, introduced in this paper, which generalizes classical Hawkes processes). This extends the recent results of Hillairet et al. (ALEA19, 2022) and Khabou et al. (J. Theoret. Prob.37, 2024) regarding the normal approximation and those of Zhu (Statist. Prob. Lett.83, 2013) for moderate deviations.
We investigate the tail behavior of the first-passage time for Sinai’s random walk in a random environment. Our method relies on the connection between Sinai’s walk and branching processes with immigration in a random environment, and the analysis on some important quantities of these branching processes such as extinction time, maximum population, and total population.
We answer the following question: if the occupied (or vacant) set of a planar Poisson Boolean percolation model contains a crossing of an $n\times n$ square, how wide is this crossing? The answer depends on whether we consider the critical, sub-, or super-critical regime, and is different for the occupied and vacant sets.
We derive large-sample and other limiting distributions of components of the allele frequency spectrum vector, $\mathbf{M}_n$, joint with the number of alleles, $K_n$, from a sample of n genes. Models analysed include those constructed from gamma and $\alpha$-stable subordinators by Kingman (thus including the Ewens model), the two-parameter extension by Pitman and Yor, and a two-parameter version constructed by omitting large jumps from an $\alpha$-stable subordinator. In each case the limiting distribution of a finite number of components of $\mathbf{M}_n$ is derived, joint with $K_n$. New results include that in the Poisson–Dirichlet case, $\mathbf{M}_n$ and $K_n$ are asymptotically independent after centering and norming for $K_n$, and it is notable, especially for statistical applications, that in other cases the limiting distribution of a finite number of components of $\mathbf{M}_n$, after centering and an unusual $n^{\alpha/2}$ norming, conditional on that of $K_n$, is normal.
In this paper, we study random walks on groups that contain superlinear-divergent geodesics, in the line of thoughts of Goldsborough and Sisto. The existence of a superlinear-divergent geodesic is a quasi-isometry invariant which allows us to execute Gouëzel’s pivoting technique. We develop the theory of superlinear divergence and establish a central limit theorem for random walks on these groups.
We study a signaling game between an employer and a potential employee, where the employee has private information regarding their production capacity. At the initial stage, the employee communicates a salary claim, after which the true production capacity is gradually revealed to the employer as the unknown drift of a Brownian motion representing the revenues generated by the employee. Subsequently, the employer has the possibility to choose a time to fire the employee in case the estimated production capacity falls short of the salary. In this setup, we use filtering and optimal stopping theory to derive an equilibrium in which the employee provides a randomized salary claim and the employer uses a threshold strategy in terms of the conditional probability for the high production capacity. The analysis is robust in the sense that various extensions of the basic model can be solved using the same methodology, including cases with positive firing costs, incomplete information about an individual’s own type, as well as an additional interview phase.
We derive an asymptotic expansion for the critical percolation density of the random connection model as the dimension of the encapsulating space tends to infinity. We calculate rigorously the first expansion terms for the Gilbert disk model, the hyper-cubic model, the Gaussian connection kernel, and a coordinate-wise Cauchy kernel.
We revisit processes generated by iterated random functions driven by a stationary and ergodic sequence. Such a process is called strongly stable if a random initialization exists for which the process is stationary and ergodic, and for any other initialization the difference of the two processes converges to zero almost surely. Under some mild conditions on the corresponding recursive map, without any condition on the driving sequence we show the strong stability of iterations. Several applications are surveyed such as generalized autoregression and queuing. Furthermore, new results are deduced for Langevin-type iterations with dependent noise and for multitype branching processes.
Random bridges have gained significant attention in recent years due to their potential applications in various areas, particularly in information-based asset pricing models. This paper aims to explore the potential influence of the pinning point’s distribution on the memorylessness and stochastic dynamics of the bridge process. We introduce Lévy bridges with random length and random pinning points, and analyze their Markov property. Our study demonstrates that the Markov property of Lévy bridges depends on the nature of the distribution of their pinning points. The law of any random variables can be decomposed into singular continuous, discrete, and absolutely continuous parts with respect to the Lebesgue measure (Lebesgue’s decomposition theorem). We show that the Markov property holds when the pinning points’ law does not have an absolutely continuous part. Conversely, the Lévy bridge fails to exhibit Markovian behavior when the pinning point has an absolutely continuous part.
We study computational aspects of repulsive Gibbs point processes, which are probabilistic models of interacting particles in a finite-volume region of space. We introduce an approach for reducing a Gibbs point process to the hard-core model, a well-studied discrete spin system. Given an instance of such a point process, our reduction generates a random graph drawn from a natural geometric model. We show that the partition function of a hard-core model on graphs generated by the geometric model concentrates around the partition function of the Gibbs point process. Our reduction allows us to use a broad range of algorithms developed for the hard-core model to sample from the Gibbs point process and approximate its partition function. This is, to the extent of our knowledge, the first approach that deals with pair potentials of unbounded range.
We consider an $\mathrm{M}/\mathrm{G}/\infty$ queue with infinite expected service time. We then provide the transience/recurrence classification of the states (the system is said to be at state n if there are n customers being served), observing also that here (unlike irreducible Markov chains, for example) it is possible for recurrent and transient states to coexist. We also prove a lower bound on the growth speed in the transient case.
We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when $d\ge 2$ and that the rate of direction changing follows a power law $t^{-\alpha}$, $0<\alpha\le 1$, or the law $(\!\ln t)^{-\beta}$ where $\beta>2$.
Previous approaches to modelling interval-censored data have often relied on assumptions of homogeneity in the sense that the censoring mechanism, the underlying distribution of occurrence times, or both, are assumed to be time-invariant. In this work, we introduce a model which allows for non-homogeneous behaviour in both cases. In particular, we outline a censoring mechanism based on a non-homogeneous alternating renewal process in which interval generation is assumed to be time-dependent, and we propose a Markov point process model for the underlying occurrence time distribution. We prove the existence of this process and derive the conditional distribution of the occurrence times given the intervals. We provide a framework within which the process can be accurately modelled, and subsequently compare our model to the homogeneous approach through a number of illustrative examples.
We investigate the hyperuniformity of marked Gibbs point processes that have weak dependencies among distant points whilst the interactions of close points are kept arbitrary. Various stability and range assumptions are imposed on the Papangelou intensity in order to prove that the resulting point process is not hyperuniform. The scope of our results covers many frequently used models, including Gibbs point processes with a superstable, lower-regular, integrable pair potential, as well as the Widom–Rowlinson model with random radii and Gibbs point processes with interactions based on Voronoi tessellations and nearest-neighbour graphs.