To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sharp, nonasymptotic bounds are obtained for the relative entropy between the distributions of sampling with and without replacement from an urn with balls of $c\geq 2$ colors. Our bounds are asymptotically tight in certain regimes and, unlike previous results, they depend on the number of balls of each color in the urn. The connection of these results with finite de Finetti-style theorems is explored, and it is observed that a sampling bound due to Stam (1978) combined with the convexity of relative entropy yield a new finite de Finetti bound in relative entropy, which achieves the optimal asymptotic convergence rate.
We study a two-dimensional discounted optimal stopping zero-sum (or Dynkin) game related to perpetual redeemable convertible bonds expressed as game (or Israeli) options in a model of financial markets in which the behaviour of the ex-dividend price of a dividend-paying asset follows a generalized geometric Brownian motion. It is assumed that the dynamics of the random dividend rate of the asset paid to shareholders are described by the mean-reverting filtering estimate of an unobservable continuous-time Markov chain with two states. It is shown that the optimal exercise (conversion) and withdrawal (redemption) times forming a Nash equilibrium are the first times at which the asset price hits either lower or upper stochastic boundaries being monotone functions of the running value of the filtering estimate of the state of the chain. We rigorously prove that the optimal stopping boundaries are regular for the stopping region relative to the resulting two-dimensional diffusion process and that the value function is continuously differentiable with respect to the both variables. It is verified by means of a change-of-variable formula with local time on surfaces that the optimal stopping boundaries are determined as a unique solution to the associated coupled system of nonlinear Fredholm integral equations among the couples of continuous functions of bounded variation satisfying certain conditions. We also give a closed-form solution to the appropriate optimal stopping zero-sum game in the corresponding model with an observable continuous-time Markov chain.
In this article, we focus on the systemic expected shortfall and marginal expected shortfall in a multivariate continuous-time risk model with a general càdlàg process. Additionally, we conduct our study under a mild moment condition that is easily satisfied when the general càdlàg process is determined by some important investment return processes. In the presence of heavy tails, we derive asymptotic formulas for the systemic expected shortfall and marginal expected shortfall under the framework that includes wide dependence structures among losses, covering pairwise strong quasi-asymptotic independence and multivariate regular variation. Our results quantify how the general càdlàg process, heavy-tailed property of losses, and dependence structures influence the systemic expected shortfall and marginal expected shortfall. To discuss the interplay of dependence structures and heavy-tailedness, we apply an explicit order 3.0 weak scheme to estimate the expectations related to the general càdlàg process. This enables us to validate the moment condition from a numerical perspective and perform numerical studies. Our numerical studies reveal that the asymptotic dependence structure has a significant impact on the systemic expected shortfall and marginal expected shortfall, but heavy-tailedness has a more pronounced effect than the asymptotic dependence structure.
The gambler’s ruin problem for correlated random walks (CRWs), both with and without delays, is addressed using the optional stopping theorem for martingales. We derive closed-form expressions for the ruin probabilities and the expected game duration for CRWs with increments $\{1,-1\}$ and for symmetric CRWs with increments $\{1,0,-1\}$ (CRWs with delays). Additionally, a martingale technique is developed for general CRWs with delays. The gambler’s ruin probability for a game involving bets on two arbitrary patterns is also examined.
In this paper we study the optimal multiple stopping problem with weak regularity for the reward, where the reward is given by a set of random variables indexed by stopping times. When the reward family is upper semicontinuous in expectation along stopping times, we construct the optimal multiple stopping strategy using the auxiliary optimal single stopping problems. We also obtain the corresponding results when the reward is given by a progressively measurable process.
We prove a Poisson process approximation result for stabilising functionals of a determinantal point process. Our results use concrete couplings of determinantal processes with different Palm measures and exploit their association properties. Second, we focus on the Ginibre process and show in the asymptotic scenario of an increasing observation window that the process of points with a large nearest neighbour distance converges after a suitable scaling to a Poisson point process. As a corollary, we obtain the scaling of the maximum nearest neighbour distance in the Ginibre process, which turns out to be different from its analogue for independent points.
The scale function plays a significant role in the fluctuation theory of Lévy processes, particularly in addressing exit problems. However, its definition is established through the Laplace transform, which generally lacks an explicit representation. This paper introduces a novel series representation for the scale function, utilizing Laguerre polynomials to construct a uniformly convergent approximation sequence. Additionally, we conduct statistical inference based on specific discrete observations and propose estimators for the scale function that are asymptotically normal.
We study random walks on metric spaces with contracting isometries. In this first article of the series, we establish sharp deviation inequalities by adapting Gouëzel’s pivotal time construction. As an application, we establish the exponential bounds for deviation from below, central limit theorem, law of the iterated logarithms, and the geodesic tracking of random walks on mapping class groups and CAT(0) spaces.
The Hawkes process is a popular candidate for researchers to model phenomena that exhibit a self-exciting nature. The classical Hawkes process assumes the excitation kernel takes an exponential form, thus suggesting that the peak excitation effect of an event is immediate and the excitation effect decays towards 0 exponentially. While the assumption of an exponential kernel makes it convenient for studying the asymptotic properties of the Hawkes process, it can be restrictive and unrealistic for modelling purposes. A variation on the classical Hawkes process is proposed where the exponential assumption on the kernel is replaced by integrability and smoothness type conditions. However, it is substantially more difficult to conduct asymptotic analysis under this setup since the intensity process is non-Markovian when the excitation kernel is non-exponential, rendering techniques for studying the asymptotics of Markov processes inappropriate. By considering the Hawkes process with a general excitation kernel as a stationary Poisson cluster process, the intensity process is shown to be ergodic. Furthermore, a parametric setup is considered, under which, by utilising the recently established ergodic property of the intensity process, consistency of the maximum likelihood estimator is demonstrated.
The present paper develops a unified approach when dealing with short- or long-range dependent processes with finite or infinite variance. We are concerned with the convergence rate in the strong law of large numbers (SLLN). Our main result is a Marcinkiewicz–Zygmund law of large numbers for $S_{n}(f)= \sum_{i=1}^{n}f(X_{i})$, where $\{X_i\}_{i\geq 1}$ is a real stationary Gaussian sequence and $f(\!\cdot\!)$ is a measurable function. Key technical tools in the proofs are new maximal inequalities for partial sums, which may be useful in other problems. Our results are obtained by employing truncation alongside new maximal inequalities. The result can help to differentiate the effects of long memory and heavy tails on the convergence rate for limit theorems.
We consider stationary configurations of points in Euclidean space that are marked by positive random variables called scores. The scores are allowed to depend on the relative positions of other points and outside sources of randomness. Such models have been thoroughly studied in stochastic geometry, e.g. in the context of random tessellations or random geometric graphs. It turns out that in a neighborhood of a point with an extreme score it is possible to rescale positions and scores of nearby points to obtain a limiting point process, which we call the tail configuration. Under some assumptions on dependence between scores, this local limit determines the global asymptotics for extreme scores within increasing windows in $\mathbb{R}^d$. The main result establishes the convergence of rescaled positions and clusters of high scores to a Poisson cluster process, quantifying the idea of the Poisson clumping heuristic by Aldous (1989, in the point process setting). In contrast to the existing results, our framework allows for explicit calculation of essentially all extremal quantities related to the limiting behavior of extremes. We apply our results to models based on (marked) Poisson processes where the scores depend on the distance to the kth nearest neighbor and where scores are allowed to propagate through a random network of points depending on their locations.
We study convergence rates, in mean, for the Hausdorff metric between a finite set of stationary random variables and their common support, which is supposed to be a compact subset of $\mathbb{R}^d$. We propose two different approaches for this study. The first is based on the notion of a minimal index. This notion is introduced in this paper. It is in the spirit of the extremal index, which is much used in extreme value theory. The second approach is based on a $\beta$-mixing condition together with a local-type dependence assumption. More precisely, all our results concern stationary $\beta$-mixing sequences satisfying a tail condition, known as the (a, b)-standard assumption, together with a local-type dependence condition or stationary sequences satisfying the (a, b)-standard assumption and having a positive minimal index. We prove that the optimal rates of the independent and identically distributed setting can be reached. We apply our results to stationary Markov chains on a ball, or to a class of Markov chains on a circle or on a torus. We study with simulations the particular examples of a Möbius Markov chain on the unit circle and of a Markov chain on the unit square wrapped on a torus.
We investigate geometric properties of invariant spatio-temporal random fields $X\colon\mathbb M^d\times \mathbb R\to \mathbb R$ defined on a compact two-point homogeneous space $\mathbb M^d$ in any dimension $d\ge 2$, and evolving over time. In particular, we focus on chi-squared-distributed random fields, and study the large-time behavior (as $T\to +\infty$) of the average on [0,T] of the volume of the excursion set on the manifold, i.e. of $\lbrace X(\cdot, t)\ge u\rbrace$ (for any $u >0$). The Fourier components of X may have short or long memory in time, i.e. integrable or non-integrable temporal covariance functions. Our argument follows the approach developed in Marinucci et al. (2021) and allows us to extend their results for invariant spatio-temporal Gaussian fields on the two-dimensional unit sphere to the case of chi-squared distributed fields on two-point homogeneous spaces in any dimension. We find that both the asymptotic variance and limiting distribution, as $T\to +\infty$, of the average empirical volume turn out to be non-universal, depending on the memory parameters of the field X.
In this paper we derive cumulant bounds for subgraph counts and power-weighted edge lengths in a class of spatial random networks known as weight-dependent random connection models. These bounds give rise to different probabilistic results, from which we mainly focus on moderate deviations of the respective statistics, but also show a concentration inequality and a normal approximation result. This involves dealing with long-range spatial correlations induced by the profile function and the weight distribution. We start by deriving the bounds for the classical case of a Poisson vertex set, and then provide extensions to α-determinantal processes.
For a spectrally negative Lévy process X, consider $g_t$ and its infinitesimal generator. Moreover, with $t\geq 0$, the last time X is below the level zero before time $\{(g_t,t, X_t), t\geq 0 \}$ the length of a current positive excursion, we derive a general formula that allows us to calculate a functional of the whole path of $U_t\,:\!=\,t-g_t$. We use a perturbation method for Lévy processes to derive an Itô formula for the three-dimensional process $ (U, X)=\{(U_t, X_t),t\geq 0\}$ in terms of the positive and negative excursions of the process X. As a corollary, we find the joint Laplace transform of $(U_{\mathbf{e}_q}, X_{\mathbf{e}_q})$, where $\mathbf{e}_q$ is an independent exponential time, and the q-potential measure of the process (U, X). Furthermore, using the results mentioned above, we find a solution to a general optimal stopping problem depending on (U, X) with an application in corporate bankruptcy. Lastly, we establish a link between the optimal prediction of $g_{\infty}$ and optimal stopping problems in terms of (U, X) as per Baurdoux, E. J. and Pedraza, J. M., $L_p$ optimal prediction of the last zero of a spectrally negative Lévy process, Annals of Applied Probability, 34 (2024), 1350–1402.
In this paper, we introduce a non-homogeneous version of the generalized counting process (GCP). We time-change this process by an independent inverse stable subordinator and derive the system of governing differential–integral equations for the marginal distributions of its increments. We then consider the GCP time-changed by a multistable subordinator and obtain its Lévy measure and the distribution of its first passage times. We discuss an application of a time-changed GCP, namely the time-changed generalized counting process-I (TCGCP-I) in ruin theory. A fractional version of the TCGCP-I is studied, and its long-range dependence property is established.
We consider a single server queue that has a threshold to change its arrival process and service speed by its queue length, which is referred to as a two-level GI/G/1 queue. This model is motivated by an energy saving problem for a single server queue whose arrival process and service speed are controlled. To obtain its performance in tractable form, we study the limit of the stationary distribution of the queue length in this two-level queue under scaling in heavy traffic. Except for a special case, this limit corresponds to its diffusion approximation. It is shown that this limiting distribution is truncated exponential (or uniform if the drift is null) below the threshold level and exponential above it under suitably chosen system parameters and generally distributed interarrival times and workloads brought by customers. This result is proved under a mild limitation on arrival parameters using the so-called basic adjoint relationship (BAR) approach studied in Braverman, Dai, and Miyazawa (2017, 2024) and Miyazawa (2017, 2024). We also intuitively discuss about a diffusion process corresponding to the limit of the stationary distribution under scaling.
We show that $\alpha $-stable Lévy motions can be simulated by any ergodic and aperiodic probability-preserving transformation. Namely we show that: for $0<\alpha <1$ and every $\alpha $-stable Lévy motion ${\mathbb {W}}$, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1\leq \alpha <2$ and every symmetric $\alpha $-stable Lévy motion, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1< \alpha <2$ and every $-1\leq \beta \leq 1$ there exists a function f whose associated time series is in the classical domain of attraction of an $S_\alpha (\ln (2), \beta ,0)$ random variable.
We use the framework of multivariate regular variation to analyse the extremal behaviour of preferential attachment models. To this end, we follow a directed linear preferential attachment model for a random, heavy-tailed number of steps in time and treat the incoming edge count of all existing nodes as a random vector of random length. By combining martingale properties, moment bounds and a Breiman type theorem we show that the resulting quantity is multivariate regularly varying, both as a vector of fixed length formed by the edge counts of a finite number of oldest nodes, and also as a vector of random length viewed in sequence space. A Pólya urn representation allows us to explicitly describe the extremal dependence between the degrees with the help of Dirichlet distributions. As a by-product of our analysis we establish new results for almost sure convergence of the edge counts in sequence space as the number of nodes goes to infinity.