We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Drawdowns measuring the decline in value from the historical running maxima over a given period of time are considered as extremal events from the standpoint of risk management. To date, research on the topic has mainly focused on the side of severity by studying the first drawdown over a certain prespecified size. In this paper we extend the discussion by investigating the frequency of drawdowns and some of their inherent characteristics. We consider two types of drawdown time sequences depending on whether a historical running maximum is reset or not. For each type we study the frequency rate of drawdowns, the Laplace transform of the nth drawdown time, the distribution of the running maximum, and the value process at the nth drawdown time, as well as some other quantities of interest. Interesting relationships between these two drawdown time sequences are also established. Finally, insurance policies protecting against the risk of frequent drawdowns are also proposed and priced.
Λ-coalescents model the evolution of a coalescing system in which any number of components randomly sampled from the whole may merge into larger blocks. This survey focuses on related combinatorial constructions and the large-sample behaviour of the functionals which characterize in some way the speed of coalescence.
In this paper we work in the framework of a k-dimensional vector of log-linear risks. Under weak conditions on the marginal tails and the dependence structure of a vector of positive risks, we derive the asymptotic tail behaviour of the aggregated risk and present an application concerning log-normal risks with stochastic volatility.
We derive multivariate moment generating functions for the conditional and stationary distributions of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). For any fixed vector of observation times t1,…,tn, we find the conditional joint distribution of (X(t1),…,X(tn)) is a multivariate noncentral chi-squared distribution and the stationary joint distribution is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. Multivariate cumulants of the stationary distribution have a simple and computationally tractable expression. We also obtain the moment generating function for the increment X(t + δ) - X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution.
Consider a one-sided Markov additive process with an upper and a lower barrier, where each can be either reflecting or terminating. For both defective and nondefective processes, and all possible scenarios, we identify the corresponding potential measures, which help to generalize a number of results for one-sided Lévy processes. The resulting rather neat formulae have various applications in risk and queueing theories, and, in particular, they lead to quasistationary distributions of the corresponding processes.
We consider a nonnegative discrete time and bounded horizon process X for which 0 is an absorbing state and extend it by a random variable that is independent of X. We find a sufficient condition for the resulting process to satisfy, after a canonical time rescaling, the hypothesis of the monotone case theorem. If X describes a secretary type search on a poset with one maximal element or if we consider X with no extension then this condition assumes an especially simple log-concavity type form.
In this paper we consider the stationary Poisson Boolean model with spherical grains and propose a family of nonparametric estimators for the radius distribution. These estimators are based on observed distances and radii, weighted in an appropriate way. They are ratio unbiased and asymptotically consistent for a growing observation window. We show that the asymptotic variance exists and is given by a fairly explicit integral expression. Asymptotic normality is established under a suitable integrability assumption on the weight function. We also provide a short discussion of related estimators as well as a simulation study.
A lumping of a Markov chain is a coordinatewise projection of the chain. We characterise the entropy rate preservation of a lumping of an aperiodic and irreducible Markov chain on a finite state space by the random growth rate of the cardinality of the realisable preimage of a finite-length trajectory of the lumped chain and by the information needed to reconstruct original trajectories from their lumped images. Both are purely combinatorial criteria, depending only on the transition graph of the Markov chain and the lumping function. A lumping is strongly k-lumpable, if and only if the lumped process is a kth-order Markov chain for each starting distribution of the original Markov chain. We characterise strong k-lumpability via tightness of stationary entropic bounds. In the sparse setting, we give sufficient conditions on the lumping to both preserve the entropy rate and be strongly k-lumpable.
We look at joint regular variation properties of MA(∞) processes of the form X = (Xk, k ∈ Z), where Xk = ∑j=0∞ψjZk-j and the sequence of random variables (Zi, i ∈ Z) are independent and identically distributed with regularly varying tails. We use the setup of MO-convergence and obtain hidden regular variation properties for X under summability conditions on the constant coefficients (ψj: j ≥ 0). Our approach emphasizes continuity properties of mappings and produces regular variation in sequence space.
Identifiability of evolutionary tree models has been a recent topic of discussion and some models have been shown to be nonidentifiable. A coalescent-based rooted population tree model, originally proposed by Nielsen et al. (1998), has been used by many authors in the last few years and is a simple tool to accurately model the changes in allele frequencies in the tree. However, the identifiability of this model has never been proven. Here we prove this model to be identifiable by showing that the model parameters can be expressed as functions of the probability distributions of subsamples, assuming that there are at least two (haploid) individuals sampled from each population. This a step toward proving the consistency of the maximum likelihood estimator of the population tree based on this model.
We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional workload process. Tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, the presence of heavy tails totally changes these asymptotics. Here we focus on the case of strong stability where both nodes release fluid at sufficiently high speeds to minimise their mutual influence. We show that, as in the one-dimensional case, big jumps provide the main cause for workloads to become large, but now they can have multidimensional features. We first find the weak tail asymptotics of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs. In this analysis, decomposition formulae for the stationary distribution play a key role. Then we employ sample-path arguments to find the exact tail asymptotics of a directional marginal at renewal arrival epochs assuming one-dimensional batch arrivals.
We construct random fields with Pólya-type autocorrelation function and dampened Pólya cross-correlation function. The marginal distribution of the random fields may be taken as any infinitely divisible distribution with finite variance, and the random fields are fully characterized in terms of their joint characteristic function. This makes available a new class of non-Gaussian random fields with flexible correlation structure for use in modeling and estimation.
We review and extend the class of hypergeometric Lévy processes explored in Kuznetsov and Pardo (2013) with a view to computing fluctuation identities related to stable processes. We give the Wiener-Hopf factorisation of a process in the extended class, characterise its exponential functional, and give three concrete examples arising from transformations of stable processes.
One of the standard methods for approximating a bivariate continuous-time Markov chain {X(t), Y(t): t ≥ 0}, which proves too difficult to solve in its original form, is to replace one of its variables by its mean, This leads to a simplified stochastic process for the remaining variable which can usually be solved, although the technique is not always optimal. In this note we consider two cases where the method is successful for carrier infections and mutating bacteria, and one case where it is somewhat less so for the SIS epidemics.
In this paper we introduce an insurance ruin model with an adaptive premium rate, henceforth referred to as restructuring/refraction, in which classical ruin and bankruptcy are distinguished. In this model the premium rate is increased as soon as the wealth process falls into the red zone and is brought back to its regular level when the wealth process recovers. The analysis is focused mainly on the time a refracted Lévy risk process spends in the red zone (analogous to the duration of the negative surplus). Building on results from [11] and [16], we identify the distribution of various functionals related to occupation times of refracted spectrally negative Lévy processes. For example, these results are used to compute both the probability of bankruptcy and the probability of Parisian ruin in this model with restructuring.
The d-dimensional Λ-Fleming-Viot generator acting on functions g(x), with x being a vector of d allele frequencies, can be written as a Wright-Fisher generator acting on functions g with a modified random linear argument of x induced by partitioning occurring in the Λ-Fleming-Viot process. The eigenvalues and right polynomial eigenvectors are easy to see from this representation. The two-dimensional process, which has a one-dimensional generator, is considered in detail. A nonlinear equation is found for the Green's function. In a model with genic selection a proof is given that there is a critical selection value such that if the selection coefficient is greater than or equal to the critical value then fixation, when the boundary 1 is hit, has probability 1 beginning from any nonzero frequency. This is an analytic proof different from the proofs of Der, Epstein and Plotkin (2011) and Foucart (2013). An application in the infinitely-many-alleles Λ-Fleming-Viot process is finding an interesting identity for the frequency spectrum of alleles that is based on size biasing. The moment dual process in the Fleming-Viot process is the usual Λ-coalescent tree back in time. The Wright-Fisher representation using a different set of polynomials gn(x) as test functions produces a dual death process which has a similarity to the Kingman coalescent and decreases by units of one. The eigenvalues of the process are analogous to the Jacobi polynomials when expressed in terms of gn(x), playing the role of xn. Under the stationary distribution when there is mutation, is analogous to the nth moment in a beta distribution. There is a d-dimensional version gn(X), and even an intriguing Ewens' sampling formula analogy when d → ∞.
Onwards from the mid-twentieth century, the stochastic filtering problem has caught the attention of thousands of mathematicians, engineers, statisticians, and computer scientists. Its applications span the whole spectrum of human endeavour, including satellite tracking, credit risk estimation, human genome analysis, and speech recognition. Stochastic filtering has engendered a surprising number of mathematical techniques for its treatment and has played an important role in the development of new research areas, including stochastic partial differential equations, stochastic geometry, rough paths theory, and Malliavin calculus. It also spearheaded research in areas of classical mathematics, such as Lie algebras, control theory, and information theory. The aim of this paper is to give a brief historical account of the subject concentrating on the continuous-time framework.
A projective moving average {Xt, t ∈ ℤ} is a Bernoulli shift written as a backward martingale transform of the innovation sequence. We introduce a new class of nonlinear stochastic equations for projective moving averages, termed projective equations, involving a (nonlinear) kernel Q and a linear combination of projections of Xt on ‘intermediate’ lagged innovation subspaces with given coefficients αi and βi,j. The class of such equations includes usual moving average processes and the Volterra series of the LARCH model. Solvability of projective equations is obtained using a recursive equality for projections of the solution Xt. We show that, under certain conditions on Q, αi, and βi,j, this solution exhibits covariance and distributional long memory, with fractional Brownian motion as the limit of the corresponding partial sums process.
We consider a stationary face-to-face tessellation X of Rd and introduce several percolation models by colouring some of the faces black in a consistent way. Our main model is cell percolation, where cells are declared black with probability p and white otherwise. We are interested in geometric properties of the union Z of black faces. Under natural integrability assumptions, we first express asymptotic mean values of intrinsic volumes in terms of Palm expectations associated with the faces. In the second part of the paper we focus on cell percolation on normal tessellations and study asymptotic covariances of intrinsic volumes of Z ∩ W, where the observation window W is assumed to be a convex body. Special emphasis is given to the planar case where the formulae become more explicit, though we need to assume the existence of suitable asymptotic covariances of the face processes of X. We check these assumptions in the important special case of a Poisson-Voronoi tessellation.
The extremes of a univariate Markov chain with regularly varying stationary marginal distribution and asymptotically linear behavior are known to exhibit a multiplicative random walk structure called the tail chain. In this paper we extend this fact to Markov chains with multivariate regularly varying marginal distributions in Rd. We analyze both the forward and the backward tail process and show that they mutually determine each other through a kind of adjoint relation. In a broader setting, we will show that even for non-Markovian underlying processes a Markovian forward tail chain always implies that the backward tail chain is also Markovian. We analyze the resulting class of limiting processes in detail. Applications of the theory yield the asymptotic distribution of both the past and the future of univariate and multivariate stochastic difference equations conditioned on an extreme event.