To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by a problem in neural encoding, we introduce an adaptive (or real-time) parameter estimation algorithm driven by a counting process. Despite the long history of adaptive algorithms, this kind of algorithm is relatively new. We develop a finite-time averaging analysis which is nonstandard partly because of the point process setting and partly because we have sought to avoid requiring mixing conditions. This is significant since mixing conditions often place restrictive history-dependent requirements on algorithm convergence.
Consider an inhomogeneous germ-grain model with spherical grains whose radii depend on their positions through a rate function, possibly perturbed by a random noise. We find the critical rate function that separates the cases when the germ-grain model covers the whole space with a positive probability and when the total coverage occurs with probability zero.
For arbitrary stationary sequences of random variables satisfying a mild mixing condition, distributional approximations are established for functionals of clusters of exceedances over a high threshold. The approximations are in terms of the distribution of the process conditionally on the event that the first variable exceeds the threshold. This conditional distribution is shown to converge to a nontrivial limit if the finite-dimensional distributions of the process are in the domain of attraction of a multivariate extreme-value distribution. In this case, therefore, limit distributions are obtained for functionals of clusters of extremes, thereby generalizing results for higher-order stationary Markov chains by Yun (2000).
This note investigates the simulation algorithm proposed by van Lieshout and van Zwet (2001). It is seen that this algorithm generally produces biased samples; the nature of this bias is further explored in a technical report by the author.
In this paper, we give an explicit expression for the distribution of the number of sides (or equivalently vertices) of the typical cell of a two-dimensional Poisson-Voronoi tessellation. We use this formula to give a table of numerical values of the distribution function.
We consider the stochastic sequence {Yt}t∈ℕ defined recursively by the linear relation Yt+1=AtYt+Bt in a random environment. The environment is described by the stochastic process {(At,Bt)}t∈ℕ and is under the simultaneous control of several agents playing a discounted stochastic game. We formulate sufficient conditions on the game which ensure the existence of Nash equilibria in Markov strategies which have the additional property that, in equilibrium, the process {Yt}t∈ℕ converges in distribution to a stationary regime.
We consider the Voronoi tessellation of Euclidean space that is generated by an inhomogeneous Poisson point process whose intensity takes different constant values on sets of some finite partition of the space. Considering the Voronoi cells as marks associated with points of the point process, we prove that the intensity measure (mean measure) of the marked Poisson point process admits an approximate decomposition formula. The true value is approximated by a mixture of respective intensity measures for homogeneous models, while the explicit upper bound for the remainder term can be computed numerically for a large class of practical examples. By the Campbell formula, analogous approximate decompositions are deduced for the Palm distributions of individual cells. This approach makes possible the analysis of a wide class of inhomogeneous-Poisson Voronoi tessellations, by means of formulae and estimates already established for homogeneous cases. Our analysis applies also to the Poisson process modulated by an independent stationary random partition, in which case the error of the approximation of the double-stochastic-Poisson Voronoi tessellation depends on some integrated linear contact distribution functions of the boundaries of the partition elements.
Let F be a distribution function in the domain of attraction of an extreme-value distribution Hγ. If Fu is the distribution function of the excesses over u and Gγ the distribution function of the generalized Pareto distribution, then it is well known that Fu(x) converges to Gγ(x/σ(u)) as u tends to the end point of F, where σ is an appropriate normalizing function. We study the rate of (uniform) convergence to 0 of F̅u(x)-G̅γ((x+u-α(u))/σ(u)), where α and σ are two appropriate normalizing functions.
The mean and the variance of the time S(t) spent by a system below a random threshold until t are obtained when the system level is modelled by the current value of a sequence of independent and identically distributed random variables appearing at the epochs of a nonhomogeneous Poisson process. In the case of the homogeneous Poisson process, the asymptotic distribution of S(t)/t as t → ∞ is derived.
This paper introduces long-range dependence for a stationary random field on a plane lattice, derives an exact power-law correlation model and other models with long-range dependence on the lattice, and explores the close connection between short-range dependent correlation functions and absolutely summable double sequences.
We consider a discrete-time risk model which describes the evolution of the reserves of an insurance company at periodic dates fixed in advance. The amount of loss per unit of time corresponds to independent and identically distributed random variables with arithmetic distribution, and the process of the receipt of premiums is assumed to be deterministic, nonnegative but not uniform (instead of being constant and equal to 1 as in the standard, compound binomial model). For this model, we determine the probability of ruin (or of non-ruin), as well as the distribution of the severity of the eventual ruin, with some finite horizon. A compact and efficient exact expression is found by bringing up-to-date a generalised family of Appell polynomials. The method used is illustrated with some numerical examples.
This paper introduces a rather general class of stationary continuous-time processes with long memory by randomizing the time-scale of short-memory processes. In particular, by randomizing the time-scale of continuous-time autoregressive and moving-average processes, many power-law decay and slow decay correlation functions are obtained.
We find the explicit value of perpetual American put options in the constant elasticity of variance model using the concept of smooth fit. We show that the price is increasing in the volatility and convex in the underlying stock price. Moreover, as the model converges to the standard Black and Scholes model, the value of the put is shown to approach the ‘correct’ limit.
In this paper, we give an explicit integral expression for the joint distribution of the number and the respective positions of the sides of the typical cell 𝒞 of a two-dimensional Poisson-Voronoi tessellation. We deduce from it precise formulae for the distributions of the principal geometric characteristics of 𝒞 (area, perimeter, area of the fundamental domain). We also adapt the method to the Crofton cell and the empirical (or typical) cell of a Poisson line process.
In this paper, we consider Galton–Watson trees conditioned by size. We show that the number of k-ancestors (ancestors that have k children) of a node u is (almost) proportional to its depth. The k, j-ancestors are also studied. The methods rely on the study of ladder variables on an associated random walk. We also give an application to finite branching random walks.
It has been observed that in many practical situations randomly stopped products of random variables have power law distributions. In this note we show that, in order for such a product to have a power law distribution, the only random indices are the exponentially distributed ones. We also consider a more general problem, which is closely related to problems concerning transformation from the central limit theorem to heavy-tailed distributions.
In this paper we derive the distribution of the total downtime of a repairable system during a given time interval. We allow dependence of the failure time and the repair time. The results are presented in the form of Laplace transforms which can be inverted numerically. We also discuss asymptotic properties of the total downtime.
This note studies a Poisson arrival selection problem for the full-information case with an unknown intensity λ which has a Gamma prior density G(r, 1/a), where a>0 and r is a natural number. For the no-information case with the same setting, the problem is monotone and the one-step look-ahead rule is an optimal stopping rule; in contrast, this note proves that the full-information case is not a monotone stopping problem.
We discuss long-memory properties and the partial sums process of the AR(1) process {Xt, t ∈ 𝕫} with random coefficient {at, t ∈ 𝕫} taking independent values Aj ∈ [0,1] on consecutive intervals of a stationary renewal process with a power-law interrenewal distribution. In the case when the distribution of generic Aj has either an atom at the point a=1 or a beta-type probability density in a neighborhood of a=1, we show that the covariance function of {Xt} decays hyperbolically with exponent between 0 and 1, and that a suitably normalized partial sums process of {Xt} weakly converges to a stable Lévy process.