To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the first instant when Brownian motion either spends consecutively more than a certain time above a certain level, or reaches another level. This stopping time generalizes the ‘Parisian’ stopping times that were introduced by Chesney et al. (1997). Using excursion theory, we derive the Laplace transform of this stopping time. We apply this result to the valuation of investment projects with a delay constraint, but with an alternative: pay a higher cost and get the project started immediately
A class of continuous-time models is developed for modelling data with heavy tails and long-range dependence. These models are based on the Green function solutions of fractional differential equations driven by Lévy noise. Some exact results on the second- and higher-order characteristics of the equations are obtained. Applications to stochastic volatility of asset prices and macroeconomics are provided.
The traditional Dirichlet process is characterized by its distribution on a measurable partition of the state space - namely, the Dirichlet distribution. In this paper, we consider a generalization of the Dirichlet process and the family of multivariate distributions it induces, with particular attention to a special case where the multivariate density function is tractable.
In this paper, we show that the time-average distributions of excess, age, and spread are given by the solution of first-order differential equations. These differential equations can be directly derived in a simple, unified way using a general level-crossing formula based on the balance of up and down crossings on sample paths, which may be helpful for the intuitive interpretation.
For functionals of multitype closed queueing networks, a conditional job-observer property is shown which provides more insight into the classical job-observer property. Applications and examples are given, including the classical job-observer property for the number of customers in a network, a representation of cycle time distributions and a basic formula for sojourn times.
Consider a ·/G/k finite-buffer queue with a stationary ergodic arrival process and delayed customer feedback, where customers after service may repeatedly return to the back of the queue after an independent general feedback delay whose distribution has a continuous density function. We use coupling methods to show that, under some mild conditions, the feedback flow of customers returning to the back of the queue converges to a Poisson process as the feedback delay distribution is scaled up. This allows for easy waiting-time approximations in the setting of Poisson arrivals, and also gives a new coupling proof of a classic highway traffic result of Breiman (1963). We also consider the case of nonindependent feedback delays.
This paper introduces a benchmark approach for the modelling of continuous, complete financial markets, when an equivalent risk-neutral measure does not exist. This approach is based on the unique characterization of a benchmark portfolio, the growth optimal portfolio, which is obtained via a generalization of the mutual fund theorem. The discounted growth optimal portfolio with minimum variance drift is shown to follow a Bessel process of dimension four. Some form of arbitrage can be explicitly modelled by arbitrage amounts. Fair contingent claim prices are derived as conditional expectations under the real world probability measure. The Heath-Jarrow-Morton forward rate equation remains valid despite the absence of an equivalent risk neutral measure.
Recently Bassan and Spizzichino (1999) have given some new concepts of multivariate ageing for exchangeable random variables, such as a special type of bivariate IFR, by comparing distributions of residual lifetimes of dependent components of different ages. In the same vein, we further study some properties of these concepts of IFR in the bivariate case. Then we introduce certain concepts of bivariate DMRL ageing and we develop a treatment that parallels those developed for bivariate IFR. For both the IFR and DMRL concepts, we analyse a weak and a strong version, and discuss some of the differences between them.
In this paper, we consider a Hilbert-space-valued autoregressive stochastic sequence (Xn) with several regimes. We suppose that the underlying process (In) which drives the evolution of (Xn) is stationary. Under some dependence assumptions on (In), we prove the existence of a unique stationary solution, and with a symmetric compact autocorrelation operator, we can state a law of large numbers with rates and the consistency of the covariance estimator. An overall hypothesis states that the regimes where the autocorrelation operator's norm is greater than 1 should be rarely visited.
A Markov chain model for a battle between two opposing forces is formulated, which is a stochastic version of one studied by F. W. Lanchester. Solutions of the backward equations for the final state yield martingales and stopping identities, but a more powerful technique is a time-reversal analogue of a known method for studying urn models. A general version of a remarkable result of Williams and McIlroy (1998) is proved.
We consider a variant of the house-selling problem in which the seller has n objects for sale and the buyers come sequentially one by one. The objective of this paper is to find the seller's optimal strategy for choosing his selling price so as to maximize the average reward per selling attempt until the nth house is sold.
In this paper we find conditions under which the epoch times of two nonhomogeneous Poisson processes are ordered in the multivariate dispersive order. Some consequences and examples of this result are given. These results extend a recent result of Brown and Shanthikumar (1998).
There are two types of Asian options in the financial markets which differ according to the role of the average price. We give a symmetry result between the floating- and fixed-strike Asian options. The proof involves a change of numéraire and time reversal of Brownian motion. Symmetries are very useful in option valuation, and in this case the result allows the use of more established fixed-strike pricing methods to price floating-strike Asian options.
The usual direct method of simulation for cluster processes requires the generation of the parent point process over a region larger than the actual observation window, since we have to allow for all possible parents giving rise to observed daughter points, and some of these parents may fall outwith the observation window. When there is no a priori bound on the distance between parent and child then we have to take care to control approximations arising from edge effects. In this paper, we present a simulation method which requires simulation only of those parent points actually giving rise to observed daughter points, thus avoiding edge effect approximation. The idea is to replace the cluster distribution by one which is conditioned to plant at least one daughter point in the observation window, and to modify the parent process to have an inhomogeneous intensity exactly balancing the effect of the conditioning. We furthermore show how the method extends to cases involving infinitely many potential parents, for example gamma-Poisson processes and shot-noise G-Cox processes, allowing us to avoid approximation due to truncation of the parent process.
Let (Sk)k≥0 be a Markov chain with state space E and (ξx)x∊E be a family of ℝp-valued random vectors assumed independent of the Markov chain. The ξx could be assumed independent and identically distributed or could be Gaussian with reasonable correlations. We study the large deviations of the sum
We study the contribution made by three or four points to certain areas associated with a typical polygon in a Voronoi tessellation of a planar Poisson process. We obtain some new results about moments and distributions and give simple proofs of some known results. We also use Robbins' formula to obtain the first three moments of the area of a typical polygon and hence the variance of the area of the polygon covering the origin.
We consider a network of dams to which the external input is a multivariate Markov additive process. For each state of the Markov chain modulating the Markov additive process, the release rates are linear (constant multiple of the content level). Each unit of material processed by a given station is then divided into fixed proportions each of which is routed to another station or leaves the system. For each state of the modulating process, this routeing is determined by some substochastic matrix. We identify simple conditions for stability and show how to compute transient and stationary characteristics of such networks.
The following problem in risk theory is considered. An insurance company, endowed with an initial capital a ≥ 0, receives premiums and pays out claims that occur according to a renewal process {N(t), t ≥ 0}. The times between consecutive claims are i.i.d. The sequence of successive claims is a sequence of i.i.d. random variables. The capital of the company is invested at interest rate α ∊ [0,1], claims increase at rate β ∊ [0,1]. The aim is to find the stopping time that maximizes the capital of the company. A dynamic programming method is used to find the optimal stopping time and to specify the expected capital at that time.
This paper is concerned with the correlation structure of a stationary discrete time-series with long memory or long-range dependence. Given a sequence of bounded variation, we obtain necessary and sufficient conditions for a function generated from the sequence to be a proper correlation function. These conditions are applied to derive various slowly decaying correlation models. To obtain correlation models with short-range dependence from an absolutely summable sequence, a simple method is introduced.
Asymptotic behaviour of the distribution of the absolute maximum of a process with independent increments is studied depending on the properties of the Lévy measure of the process. Some applications to the risk process are also considered.