To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the contribution made by three or four points to certain areas associated with a typical polygon in a Voronoi tessellation of a planar Poisson process. We obtain some new results about moments and distributions and give simple proofs of some known results. We also use Robbins' formula to obtain the first three moments of the area of a typical polygon and hence the variance of the area of the polygon covering the origin.
We consider a network of dams to which the external input is a multivariate Markov additive process. For each state of the Markov chain modulating the Markov additive process, the release rates are linear (constant multiple of the content level). Each unit of material processed by a given station is then divided into fixed proportions each of which is routed to another station or leaves the system. For each state of the modulating process, this routeing is determined by some substochastic matrix. We identify simple conditions for stability and show how to compute transient and stationary characteristics of such networks.
The following problem in risk theory is considered. An insurance company, endowed with an initial capital a ≥ 0, receives premiums and pays out claims that occur according to a renewal process {N(t), t ≥ 0}. The times between consecutive claims are i.i.d. The sequence of successive claims is a sequence of i.i.d. random variables. The capital of the company is invested at interest rate α ∊ [0,1], claims increase at rate β ∊ [0,1]. The aim is to find the stopping time that maximizes the capital of the company. A dynamic programming method is used to find the optimal stopping time and to specify the expected capital at that time.
This paper is concerned with the correlation structure of a stationary discrete time-series with long memory or long-range dependence. Given a sequence of bounded variation, we obtain necessary and sufficient conditions for a function generated from the sequence to be a proper correlation function. These conditions are applied to derive various slowly decaying correlation models. To obtain correlation models with short-range dependence from an absolutely summable sequence, a simple method is introduced.
Asymptotic behaviour of the distribution of the absolute maximum of a process with independent increments is studied depending on the properties of the Lévy measure of the process. Some applications to the risk process are also considered.
In a sequence of Markov-dependent trials, the optimal strategy which maximizes the probability of stopping on the last success is considered. Both homogeneous Markov chains and nonhomogeneous Markov chains are studied. For the homogeneous case, the analysis is divided into two parts and both parts are realized completely. For the nonhomogeneous case, we prove a result which contains the result of Bruss (2000) under an independence structure.
For a real-valued ergodic process X with strictly stationary increments satisfying some measurability and continuity assumptions it is proved that the long-run ‘average behaviour’ of all its increments over finite intervals replicates the distribution of the corresponding increments of X in a strong sense. Moreover, every Lévy process has a version that possesses this ergodic path property.
Empirical point processes of exceedances play an important role in extreme value theory, and their limiting behaviour has been extensively studied. Here, we provide explicit bounds on the accuracy of approximating an exceedance process by a compound Poisson or Poisson cluster process, in terms of a Wasserstein metric that is generally more suitable for the purpose than the total variation metric. The bounds only involve properties of the finite, empirical sequence that is under consideration, and not of any limiting process. The argument uses Bernstein blocks and Lindeberg's method of compositions.
We consider a class of optimal stopping problems where the ability to stop depends on an exogenous Poisson signal process - we can only stop at the Poisson jump times. Even though the time variable in these problems has a discrete aspect, a variational inequality can be obtained by considering an underlying continuous-time structure. Depending on whether stopping is allowed at t = 0, the value function exhibits different properties across the optimal exercise boundary. Indeed, the value function is only 𝒞0 across the optimal boundary when stopping is allowed at t = 0 and 𝒞2 otherwise, both contradicting the usual 𝒞1 smoothness that is necessary and sufficient for the application of the principle of smooth fit. Also discussed is an equivalent stochastic control formulation for these stopping problems. Finally, we derive the asymptotic behaviour of the value functions and optimal exercise boundaries as the intensity of the Poisson process goes to infinity or, roughly speaking, as the problems converge to the classical continuous-time optimal stopping problems.
The main purpose of this work is to study and apply generalized contact distributions of (inhomogeneous) Boolean models Z with values in the extended convex ring. Given a convex body L ⊂ ℝd and a gauge body B ⊂ ℝd, such a generalized contact distribution is the conditional distribution of the random vector (dB(L,Z),uB(L,Z),pB(L,Z),lB(L,Z)) given that Z∩L = ∅, where Z is a Boolean model, dB(L,Z) is the distance of L from Z with respect to B, pB(L,Z) is the boundary point in L realizing this distance (if it exists uniquely), uB(L,Z) is the corresponding boundary point of B (if it exists uniquely) and lB(L,·) may be taken from a large class of locally defined functionals. In particular, we pursue the question of the extent to which the spatial density and the grain distribution underlying an inhomogeneous Boolean model Z are determined by the generalized contact distributions of Z.
In this paper we obtain the rate of convergence to equilibrium of a class of interacting marked point processes, introduced by Kerstan, in two different situations. Indeed, we prove the exponential and subexponential ergodicity of such a class of stochastic processes. Our results are an extension of the corresponding results of Brémaud, Nappo and Torrisi. The generality of the dynamics which we take into account allows the application to the so-called loss networks, and multivariate birth and death processes.
Empirical studies of data traffic in high-speed networks suggest that network traffic exhibits self-similarity and long-range dependence. Cumulative network traffic has been modeled using the so-called ON/OFF model. It was shown that cumulative network traffic can be approximated by either fractional Brownian motion or stable Lévy motion, depending on how many sources are active in the model. In this paper we consider exceedances of a high threshold by the sequence of lengths of ON-periods. If the cumulative network traffic converges to stable Lévy motion, the number of exceedances converges to a Poisson limit. The same holds in the fractional Brownian motion case, provided a very high threshold is used. Finally, we show that the number of exceedances obeys the central limit theorem.
In this paper, we analyse a model of a regular tree loss network that supports two types of calls: unicast calls that require unit capacity on a single link, and multicast calls that require unit capacity on every link emanating from a node. We study the behaviour of the distribution of calls in the core of a large network that has uniform unicast and multicast arrival rates. At sufficiently high multicast call arrival rates the network exhibits a ‘phase transition’, leading to unfairness due to spatial variation in the multicast blocking probabilities. We study the dependence of the phase transition on unicast arrival rates, the coordination number of the network, and the parity of the capacity of edges in the network. Numerical results suggest that the nature of phase transitions is qualitatively different when there are odd and even capacities on the links. These phenomena are seen to persist even with the introduction of nonuniform arrival rates and multihop multicast calls into the network. Finally, we also show the inadequacy of approximations such as the Erlang fixed-point approximations when multicasting is present.
In this article we obtain rates of convergence to equilibrium of marked Hawkes processes in two situations. Firstly, the stationary process is the empty process, in which case we speak of the rate of extinction. Secondly, the stationary process is the unique stationary and nontrivial marked Hawkes process, in which case we speak of the rate of installation. The first situation models small epidemics, whereas the results in the second case are useful in deriving stopping rules for simulation algorithms of Hawkes processes with random marks.
We consider spectrally positive Lévy processes with regularly varying Lévy measure and study conditional limit theorems that describe the way that various rare events occur. Specifically, we are interested in the asymptotic behaviour of the distribution of the path of the Lévy process (appropriately scaled) up to some fixed time, conditionally on the event that the process exceeds a (large) positive value at that time. Another rare event we study is the occurrence of a large maximum value up to a fixed time, and the corresponding asymptotic behaviour of the (scaled) Lévy process path. We study these distributional limit theorems both for a centred Lévy process and for one with negative drift. In the latter case, we also look at the reflected process, which is of importance in applications. Our techniques are based on the explicit representation of the Lévy process in terms of a two-dimensional Poisson random measure and merely use the Poissonian properties and regular variation estimates. We also provide a proof for the asymptotic behaviour of the tail of the stationary distribution for the reflected process. The work is motivated by earlier results for discrete-time random walks (e.g. Durrett (1980) and Asmussen (1996)) and also by their applications in risk and queueing theory.
We consider a nonneutral population genetics model with parent-independent mutations and two selective classes. We calculate the stationary distribution of the type of the common ancestor of a sample of genes from this model. The expected fitness of any ancestor (including the most recent common ancestor of any sample) is shown to be greater than the expected fitness of a randomly chosen gene from the population. The process of mutations to the common ancestor is also analysed. Our results are related to, but more general than, results obtained from diffusion theory.
We give (i) the Cramér power spectral measure of the general shot noise process with random excitation and non-Poisson stationary driving point processes and (ii) the Bartlett power spectral measure of the self-exciting Hawkes point process with random excitation, also called the Hawkes branching point process with random fertility rate. The latter is obtained via the isometry formula for integrals with respect to the canonical martingale measure associated with a marked point process.
If Z is the branching mechanism for a supercritical Galton-Watson tree with a single progenitor and E[ZlogZ] < ∞, then there is a branching measure μ defined on ∂Γ, the set of all paths ξ which have a unique node ξ|n at each generation n. We use the natural metric ρ(ξ,η) = e−n, where n = max{k : ξ|k = η|k}, and observe that the local dimension index is d(μ,ξ) = limn→∞ log(μB(ξ|n))/(-n) = α = logm, for μ-almost every ξ. Our objective is to consider the exceptional points where the above display may fail. There is a nontrivial ‘thin’ spectrum for ̄d(μ,ξ) when p1 = P{Z = 1} > 0 and Z has finite moments of all positive orders. Because ̱d(μ,ξ) = a for all ξ, we obtain a ‘thick’ spectrum by introducing the ‘right’ power of a logarithm. In both cases, we find the Hausdorff dimension of the exceptional sets.
Consider a real-valued Itô process X(t) = x + ∫0tμ(s)ds + ∫0tσ(s)dW(s) + A(t) driven by a Brownian motion {W(t) : t > 0}. The controller chooses the real-valued progressively measurable processes μ, σ and A subject to constraints |μ(t)| ≤ μ0(X(t-)) and |σ(t)| ≥ σ0(X(t-)), where the functions μ0 and σ0 are given. The process A is a bounded variation process and |A|(t) represents its total variation on [0,t]. The objective is to minimize the long-term average cost lim supT→∞(1/T)E[|A|(T) + ∫0Th(X(s))ds], where h is a given nonnegative continuous function. An optimal process X* is determined. It turned out that X* is a reflecting diffusion process whose state space is a finite interval [a*, b*]. The optimal drift and diffusion controls are explicitly derived and the optimal bounded variation process A* is determined in terms of local-time processes of X* at the points a* and b*.
The paper studies the impact of a broadly understood trend, which includes a change point in mean and monotonic trends studied by Bhattacharya et al. (1983), on the asymptotic behaviour of a class of tests designed to detect long memory in a stationary sequence. Our results pertain to a family of tests which are similar to Lo's (1991) modified R/S test. We show that both long memory and nonstationarity (presence of trend or change points) can lead to rejection of the null hypothesis of short memory, so that further testing is needed to discriminate between long memory and some forms of nonstationarity. We provide quantitative description of trends which do or do not fool the R/S-type long memory tests. We show, in particular, that a shift in mean of a magnitude larger than N-½, where N is the sample size, affects the asymptotic size of the tests, whereas smaller shifts do not do so.