To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, the instantaneous availability of a system maintained under periodic inspection is investigated using random walk models. Two cases are considered. In the first model, the system is repaired or modified and it is assumed to be as good as new upon periodic inspection and maintenance. In the second model, the system is not modified after the inspection if the system is still working, and the condition of the system is assumed to be the same as that before the inspection. For both models the failures only can be found through the inspection. Perfect repair or replacement of a failed system is assumed to be carried out, but the time it takes can be constant or of a random length. The relationship between this problem and the random walk model in a two-dimensional plane is described. Several new results are also shown.
Seeds are randomly scattered in ℝd according to an m-dependent point process. Each seed has its own potential germination time. From each seed that succeeds in germinating, a spherical inhibited region grows to prohibit germination of any seed with later potential germination time. We show that under certain conditions on the distribution of the potential germination time, the number of germinated seeds in a large region has an asymptotic normal distribution.
Let n points be placed uniformly at random in a subset A of the plane. A point is said to be maximal in the configuration if no other point is larger in both coordinates. We show that, for large n and for many sets A, the number of maximal points is approximately normally distributed. The argument uses Stein's method, and is also applicable in higher dimensions.
In this paper, a single channel FIFO fluid queue with an infinite buffer space and a long-range dependent input is studied. The input traffic is modeled by an average input rate plus a standard fractional Brownian motion as the fluctuation. Lower and upper bounds are derived for the tail distribution of the transient queue length at time T, which result in a logarithmic characterization of the asymptotic behavior of the tail distribution. Furthermore, the exact asymptotic is also obtained. It is observed that the transient queue length under fractional Brownian input does not suffer from the heavy-tail property as does the steady-state queue length. The results are used to compute the equivalent bandwidth requirement for ATM broadband connections with fractional Brownian traffic feed and finite connection holding time.
Let Xt be an n-dimensional diffusion process and S(t) be a set-valued function. Suppose Xt is invisible when it is hidden by S(t), but we can see the process exactly otherwise. In this paper, we derive the optimal estimator E[f(X1) | Xs1Xs∉S(s), 0 ≤ s ≤ 1] for a bounded Borel function f. We illustrate some computations for Gauss-Markov processes.
This article deals with the distribution of the view of a random environment as seen by an observer whose location at each moment is determined by the environment. The main application is in statistical fluid mechanics, where the environment consists of a random velocity field and the observer is a particle moving in the velocity field, possibly subject to molecular diffusion. Several results on such Lagrangian observations of the environment have appeared in the literature, beginning with the 1957 dissertation of J. L. Lumley. This article unites these results into a simple unified framework and rounds out the theory with new results in several directions. When the environment is homogeneous, the problem can be re-cast in terms of certain random mappings on the physical space that are based on the random location of the observer. If these mappings preserve the invariant measure on the physical space, then the view from the random location has the same distribution as the view from the origin. If these mappings satisfy the flow property and the environment is stationary, then the succession of Lagrangian observations over time forms a strictly stationary process. In particular, for motion in a homogeneous, stationary, and nondivergent velocity field, the Lagrangian velocity (the velocity of the particle) is strictly stationary, which was first observed by Lumley. In the compressible case, the distribution of a Lagrangian observation has a density with respect to the distribution of the view from the origin, and in some cases convergence in distribution of the Lagrangian observations as time tends to infinity can be shown.
We define the extension of the so-called ‘martingales in the branching random walk’ in R or C to some Banach algebras B of infinite dimension and give conditions for their convergence, almost surely and in the Lp norm. This abstract approach gives conditions for the simultaneous convergence of uncountable families of such martingales constructed simultaneously in C, the idea being to consider such a family as a function-valued martingale in a Banach algebra of functions. The approach is an alternative to those of Biggins (1989), (1992) and Barral (2000), and it applies to a class of families to which the previous approach did not. We also give a result on the continuity of these multiplicative processes. Our results extend to a varying environment version of the usual construction: instead of attaching i.i.d. copies of a given random vector to the nodes of the tree ∪n≥0N+n, the distribution of the vector depends on the node in the multiplicative cascade. In this context, when B=R and in the nonnegative case, we generalize the measure on the boundary of the tree usually related to the construction; then we evaluate the dimension of this nonstatistically self-similar measure. In the self-similar case, our convergence results make it possible to simultaneously define uncountable families of such measures, and then to estimate their dimension simultaneously.
An urn contains m minus balls and p plus balls, and we draw balls from this urn one at a time randomly without replacement until we wish to stop. Let Pn and Mn denote the respective numbers of plus balls and minus balls drawn by time n and define Z0 = 0, Zn = Pn - Mn, 1 ≤ n ≤ m + p. The main problem of this paper is to stop with maximum probability on the maximum of the trajectory formed by . This problem is closely related to the celebrated ballot problem, so that we obtain some identities concerning the ballot problem and then derive the optimal stopping rule explicitly. Some related modifications are also studied.
We give a general construction of sequential games among multiple players, as well as a construction of the composition of sequential games. We obtain new properties of the optimal class of win-by-k games, including closure under composition and independence between the winner of the game and the number of points played. We obtain new results on the asymptotic efficiency of the n-point, win-by-k games.
We study a simple first-order nonnegative bilinear time-series model and give conditions under which the model is stationary. The probability density function of the stationary distribution (when it exists) is found. We also discuss the tail behaviour of the stationary distribution and calculate the probability density function by a numerical method. Simulation is used to check the calculation.
For a compound Poisson dam with exponential jumps and linear release rate (shot-noise process), we compute the Laplace-Stieltjes transform (LST) and the mean of the hitting time of some positive level given that the process starts from some given positive level. The solution for the LST is in terms of confluent hypergeometric functions of the first and second kinds (Kummer functions).
The paper describes a new numerical method for the calculation of noncrossing probabilities for arbitrary boundaries by a Poisson process. We find the method to be simple in implementation, quick and efficient - it works reliably for Poisson processes of very high intensity n, up to several thousand. Hence, it can be used to detect unusual features in the finite-sample behaviour of empirical process and trace it down to very high sample sizes. It also can be used as a good approximation for noncrossing probabilities for Brownian motion and Brownian bridge, in particular when the boundaries are not regular. As a numerical example we demonstrate the divergence of normalized Kolmogorov-Smirnov statistics from their prescribed limiting distributions (Eicker (1979), Jaeshke (1979)) for quite large n in contrast to very regular behaviour of statistics of Mason (1983). For the Brownian motion case we considered square-root, Daniels' (1969) and Grooneboom's (1989) boundaries.
We consider the sum Sd of record values in a sequence of independentrandom variables that are uniformly distributed on 1,…,d. This sum can be interpreted as the total amount of time spent in record lifetimes in the standard renewal theoretic setup. We investigate the distributional limit of Sd and some related quantities as d→∞. Some explicit values are given for d=6, a case that can be interpreted as a simple game of chance.
Variograms and covariance functions are key tools in geostatistics. However, various properties, characterizations, and decomposition theorems have been established for covariance functions only. We present analogous results for variograms and explore the connections with covariance functions. Our findings include criteria for covariance functions on intervals, and we apply them to exponential models, fractional Brownian motion, and locally polynomial covariances. In particular, we characterize isotropic locally polynomial covariance functions of degree 3.
The paper yields retrieval formulae of the directional distribution of a stationary k-flat process in ℝd if its rose of intersections with all r-flats is known. Cases k = d −1, 1 ≤ r ≤ d - 1 for arbitrary d and d = 4, k = 2, r = 2 are considered. Some generalizations to manifold processes in ℝd are made. The proofs use the methods of harmonic analysis on higher Grassmannians (spherical harmonics, integral transforms).
With the aim of providing greater flexibility in developing and applying shot noise models, this paper studies shot noise on cluster point processes with both pointwise and cluster marks. For example, in financial modelling, responses to events in the financial market may occur in clusters, with random amplitudes including a ‘cluster component’ reflecting a degree of commonness among responses within a cluster. For such shot noise models, general formulae for the characteristic functional are developed and specialized to the case of Neyman-Scott clustering with cluster marks. For several general forms of response function, long range dependence of the corresponding equilibrium shot noise models is investigated. It is shown, for example, that long range dependence holds when the ‘structure component’ of the response function decays slowly enough, or when the response function has a finite random duration with a heavy tailed distribution.
We solve the following three optimal stopping problems for different kinds of options, based on the Black-Scholes model of stock fluctuations. (i) The perpetual lookback American option for the running maximum of the stock price during the life of the option. This problem is more difficult than the closely related one for the Russian option, and we show that for a class of utility functions the free boundary is governed by a nonlinear ordinary differential equation. (ii) A new type of stock option, for a company, where the company provides a guaranteed minimum as an added incentive in case the market appreciation of the stock is low, thereby making the option more attractive to the employee. We show that the value of this option is given by solving a nonalgebraic equation. (iii) A new call option for the option buyer who is risk-averse and gets to choose, a priori, a fixed constant l as a ‘hedge’ on a possible downturn of the stock price, where the buyer gets the maximum of l and the price at any exercise time. We show that the optimal policy depends on the ratio of x/l, where x is the current stock price.
The optimal stopping value of random variables X1,…,Xn depends on the joint distribution function of the random variables and hence on their marginals as well as on their dependence structure. The maximal and minimal values of the optimal stopping problem is determined within the class of all joint distributions with fixed marginals F1,…,Fn. They correspond to some sort of strong negative or positive dependence of the random variables. Any value inbetween these two extremes is attained for some dependence structures. The determination of the minimal value is based on some new ordering results for probability measures, in particular on lattice properties of stochastic orderings. We also identify properties of dependence structures leading to the minimal optimal stopping value. In the proofs we need an extension of Strassen's theorem on representation of the convex order which reveals that convex ordered distributions can be coupled by a two-step martingale (X,Y) with the additional property that Y is stochastically increasing in X.
A new statistical method for estimating the orientation distribution of fibres in a fibre process is suggested where the process is observed in the form of a degraded digital greyscale image. The method is based on line transect sampling of the image in a few fixed directions. A well-known method based on stereology is available if the intersections between the transects and fibres can be counted. We extend this to the case where, instead of the intersection points, only scaled variograms of grey levels along the transects are observed. The nonlinear estimation equations for a parametric orientation distribution as well as a numerical algorithm are given. The method is illustrated by a real-world example and simulated examples where the elliptic orientation distribution is applied. In its simplicity, the new approach is intended for industrial on-line estimation of fibre orientation in disordered fibrous materials.
In this paper we study random variables related to a shock reliability model. Our models can be used to study systems that fail when k consecutive shocks with critical magnitude (e.g. above or below a certain critical level) occur. We obtain properties of the distribution function of the random variables involved and we obtain their limit behaviour when k tends to infinity or when the probability of entering a critical set tends to zero. This model generalises the Poisson shock model.