To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we derive several explicit results on one special sticky diffusion process which is constructed as a time-changed version of a diffusion with no sticky points. A theorem concerning the process-related Green operators defined on some nonnegative piecewise continuous functions is provided. Then, based on this theorem, we explore the distributional properties of the sticky diffusion. A financial application is presented where we compute the value of the European vanilla call option written on the underlying with sticky price dynamics.
For a spectrally negative Lévy process X, killed according to a rate that is a function ω of its position, we complement the recent findings of [12] by analysing (in greater generality) the exit probability of the one-sided upwards passage problem. When ω is strictly positive, this problem is related to the determination of the Laplace transform of the first passage time upwards for X that has been time-changed by the inverse of the additive functional $$\int_0^ \cdot \omega ({X_u}){\kern 1pt} {\rm{d}}u$$. In particular, our findings thus shed extra light on related results concerning first passage times downwards (resp. upwards) of continuous-state branching processes (resp. spectrally negative positive self-similar Markov processes).
For spectrally negative Lévy processes, we prove several fluctuation results involving a general draw-down time, which is a downward exit time from a dynamic level that depends on the running maximum of the process. In particular, we find expressions of the Laplace transforms for the two-sided exit problems involving the draw-down time. We also find the Laplace transforms for the hitting time and creeping time over the running-maximum related draw-down level, respectively, and obtain an expression for a draw-down associated potential measure. The results are expressed in terms of scale functions for the spectrally negative Lévy processes.
We couple a multi-type stochastic epidemic process with a directed random graph, where edges have random weights (traversal times). This random graph representation is used to characterise the fractions of individuals infected by the different types of vertices among all infected individuals in the large population limit. For this characterisation, we rely on the theory of multi-type real-time branching processes. We identify a special case of the two-type model in which the fraction of individuals of a certain type infected by individuals of the same type is maximised among all two-type epidemics approximated by branching processes with the same mean offspring matrix.
Based on a simple object, an i.i.d. sequence of positive integer-valued random variables {an}n∊ℤ, we introduce and study two random structures and their connections. First, a population dynamics, in which each individual is born at time n and dies at time n + an. This dynamics is that of a D/GI/∞ queue, with arrivals at integer times and service times given by {an}n∊ℤ. Second, the directed random graph Tf on ℤ generated by the random map f(n) = n + an. Assuming only that E [a0] < ∞ and P [a0 = 1] > 0, we show that, in steady state, the population dynamics is regenerative, with one individual alive at each regeneration epoch. We identify a unimodular structure in this dynamics. More precisely, Tf is a unimodular directed tree, in which f(n) is the parent of n. This tree has a unique bi-infinite path. Moreover, Tf splits the integers into two categories: ephemeral integers, with a finite number of descendants of all degrees, and successful integers, with an infinite number. Each regeneration epoch is a successful individual such that all integers less than it are its descendants of some order. Ephemeral, successful, and regeneration integers form stationary and mixing point processes on ℤ.
Given a free unitary quantum group $G=A_{u}(F)$, with $F$ not a unitary $2\times 2$ matrix, we show that the Martin boundary of the dual of $G$ with respect to any $G$-${\hat{G}}$-invariant, irreducible, finite-range quantum random walk coincides with the topological boundary defined by Vaes and Vander Vennet. This can be thought of as a quantum analogue of the fact that the Martin boundary of a free group coincides with the space of ends of its Cayley tree.
We study negative association for mixed sampled point processes and show that negative association holds for such processes if a random number of their points fulfils the ultra log-concave (ULC) property. We connect the negative association property of point processes with directionally convex dependence ordering, and show some consequences of this property for mixed sampled and determinantal point processes. Some applications illustrate the general theory.
In this paper we introduce and solve a generalization of the classic average cost Brownian control problem in which a system manager dynamically controls the drift rate of a diffusion process X. At each instant, the system manager chooses the drift rate from a pair {u, v} of available rates and can invoke instantaneous controls either to keep X from falling or to keep it from rising. The objective is to minimize the long-run average cost consisting of holding or delay costs, processing costs, costs for invoking instantaneous controls, and fixed costs for changing the drift rate. We provide necessary and sufficient conditions on the cost parameters to ensure the problem admits a finite optimal solution. When it does, a simple control band policy specifying economic buffer sizes (α, Ω) and up to two switching points is optimal. The controller should invoke instantaneous controls to keep X in the interval (α, Ω). A policy with no switching points relies on a single drift rate exclusively. When there is no cost to change the drift rate, a policy with a single switching point s indicates that the controller should change to the slower drift rate when X exceeds s and use the faster drift rate otherwise. When there is a cost to change the drift rate, a policy with two switching points s < S indicates that the controller should maintain the faster drift rate until X exceeds S and maintain the slower drift rate until X falls below s.
In the literature on optimal stopping, the problem of maximizing the expected discounted reward over all stopping times has been explicitly solved for some special reward functions (including (x+)ν, (ex − K)+, (K − e− x)+, x ∈ ℝ, ν ∈ (0, ∞), and K > 0) under general random walks in discrete time and Lévy processes in continuous time (subject to mild integrability conditions). All such reward functions are continuous, increasing, and logconcave while the corresponding optimal stopping times are of threshold type (i.e. the solutions are one-sided). In this paper we show that all optimal stopping problems with increasing, logconcave, and right-continuous reward functions admit one-sided solutions for general random walks and Lévy processes, thereby generalizing the aforementioned results. We also investigate in detail the principle of smooth fit for Lévy processes when the reward function is increasing and logconcave.
In this paper we integrate two strands of the literature on stability of general state Markov chains: conventional, total-variation-based results and more recent order-theoretic results. First we introduce a complete metric over Borel probability measures based on ‘partial’ stochastic dominance. We then show that many conventional results framed in the setting of total variation distance have natural generalizations to the partially ordered setting when this metric is adopted.
A spatio-temporal model of particle or star growth is defined, whereby new unit masses arrive sequentially in discrete time. These unit masses are referred to as candidate stars, which tend to arrive in mass-dense regions and then either form a new star or are absorbed by some neighbouring star of high mass. We analyse the system as time increases, and derive the asymptotic growth rate of the number of stars as well as the size of a randomly chosen star. We also prove that the size-biased mass distribution converges to a Poisson–Dirichlet distribution. This is achieved by embedding our model into a continuous-time Markov process, so that new stars arrive according to a marked Poisson process, with locations as marks, whereas existing stars grow as independent Yule processes. Our approach can be interpreted as a Hoppe-type urn scheme with a spatial structure. We discuss its relevance for and connection to models of population genetics, particle aggregation, image segmentation, epidemic spread, and random graphs with preferential attachment.
We prove existence and uniqueness of a stationary distribution and absolute regularity for nonlinear GARCH and INGARCH models of order (p, q). In contrast to previous work we impose, besides a geometric drift condition, only a semi-contractive condition which allows us to include models which would be ruled out by a fully contractive condition. This results in a subgeometric rather than the more usual geometric decay rate of the mixing coefficients. The proofs are heavily based on a coupling of two versions of the processes.
We consider discrete-time Markov chains with Polish state space. The large deviations principle for empirical measures of a Markov chain can equivalently be stated in Laplace principle form, which builds on the convex dual pair of relative entropy (or Kullback– Leibler divergence) and cumulant generating functional f ↦ ln ʃ exp (f). Following the approach by Lacker (2016) in the independent and identically distributed case, we generalize the Laplace principle to a greater class of convex dual pairs. We present in depth one application arising from this extension, which includes large deviation results and a weak law of large numbers for certain robust Markov chains—similar to Markov set chains—where we model robustness via the first Wasserstein distance. The setting and proof of the extended Laplace principle are based on the weak convergence approach to large deviations by Dupuis and Ellis (2011).
For 0 < a < 1, the Sibuya distribution sa is concentrated on the set ℕ+ of positive integers and is defined by the generating function $$\sum\nolimits_{n = 1}^\infty s_a (n)z^{{\kern 1pt} n} = 1 - (1 - z)^a$$. A distribution q on ℕ+ is called a progeny if there exists a branching process (Zn)n≥0 such that Z0 = 1, such that $$(Z_1 ) \le 1$$, and such that q is the distribution of $$\sum\nolimits_{n = 0}^\infty Z_n$$. this paper we prove that sa is a progeny if and only if $${\textstyle{1 \over 2}} \le a < 1$$. The main point is to find the values of b = 1/a such that the power series expansion of u(1 − (1 − u)b)−1 has nonnegative coefficients.
In large storage systems, files are often coded across several servers to improve reliability and retrieval speed. We study load balancing under the batch sampling routeing scheme for a network of n servers storing a set of files using the maximum distance separable (MDS) code (cf. Li (2016)). Specifically, each file is stored in equally sized pieces across L servers such that any k pieces can reconstruct the original file. When a request for a file is received, the dispatcher routes the job into the k-shortest queues among the L for which the corresponding server contains a piece of the file being requested. We establish a law of large numbers and a central limit theorem as the system becomes large (i.e. n → ∞), for the setting where all interarrival and service times are exponentially distributed. For the central limit theorem, the limit process take values in ℓ2, the space of square summable sequences. Due to the large size of such systems, a direct analysis of the n-server system is frequently intractable. The law of large numbers and diffusion approximations established in this work provide practical tools with which to perform such analysis. The power-of-d routeing scheme, also known as the supermarket model, is a special case of the model considered here.
$\mathbb{Z}^{d}$-extensions of probability-preserving dynamical systems are themselves dynamical systems preserving an infinite measure, and generalize random walks. Using the method of moments, we prove a generalized central limit theorem for additive functionals of the extension of integral zero, under spectral assumptions. As a corollary, we get the fact that Green–Kubo’s formula is invariant under induction. This allows us to relate the hitting probability of sites with the symmetrized potential kernel, giving an alternative proof and generalizing a theorem of Spitzer. Finally, this relation is used to improve, in turn, the assumptions of the generalized central limit theorem. Applications to Lorentz gases in finite horizon and to the geodesic flow on Abelian covers of compact manifolds of negative curvature are discussed.
The class of stochastically self-similar sets contains many famous examples of random sets, for example, Mandelbrot percolation and general fractal percolation. Under the assumption of the uniform open set condition and some mild assumptions on the iterated function systems used, we show that the quasi-Assouad dimension of self-similar random recursive sets is almost surely equal to the almost sure Hausdorff dimension of the set. We further comment on random homogeneous and V -variable sets and the removal of overlap conditions.
We show that a coupling of non-colliding simple random walkers on the complete graph on n vertices can include at most n - log n walkers. This improves the only previously known upper bound of n - 2 due to Angel, Holroyd, Martin, Wilson and Winkler (Electron. Commun. Probab.18 (2013)). The proof considers couplings of i.i.d. sequences of Bernoulli random variables satisfying a similar avoidance property, for which there is separate interest.
Consider a supercritical Crump‒Jagers process in which all births are at integer times (the lattice case). Let μ̂(z) be the generating function of the intensity of the offspring process, and consider the complex roots of μ̂(z)=1. The root of smallest absolute value is e-α=1∕m, where α>0 is the Malthusian parameter; let γ* be the root of second smallest absolute value. Subject to some technical conditions, the second-order fluctuations of the age distribution exhibit one of three types of behaviour: (i) when γ*>e-α∕2=m-1∕2, they are asymptotically normal; (ii) when γ*=e-α∕2, they are still asymptotically normal, but with a larger variance; and (iii) when γ*<e-α∕2, the fluctuations are in general oscillatory and (degenerate cases excluded) do not converge in distribution. This trichotomy is similar to what has been observed in related situations, such as some other branching processes and for Pólya urns. The results lead to a symbolic calculus describing the limits. The asymptotic results also apply to the total of other (random) characteristics of the population.
We present a law of large numbers and a central limit theorem for the time to absorption of Λ-coalescents with dust started from n blocks, as n→∞. The proofs rely on an approximation of the logarithm of the block-counting process by means of a drifted subordinator.