To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a problem when the optimal stopping for a one-dimensional diffusion process is generated by a threshold strategy. Namely, we give necessary and sufficient conditions (on the diffusion process and the payoff function) under which a stopping set has a threshold structure.
We revisit regularity of SLE trace, for all $\unicode[STIX]{x1D705}\neq 8$, and establish Besov regularity under the usual half-space capacity parametrization. With an embedding theorem of Garsia–Rodemich–Rumsey type, we obtain finite moments (and hence almost surely) optimal variation regularity with index $\min (1+\unicode[STIX]{x1D705}/8,2)$, improving on previous works of Werness, and also (optimal) Hölder regularity à la Johansson Viklund and Lawler.
We consider boundary-value problems for differential equations of second order containing a Brownian motion (random perturbation) and a small parameter and prove a special existence and uniqueness theorem for random solutions. We study the asymptotic behaviour of these solutions as the small parameter goes to zero and show the stochastic averaging theorem for such equations. We find the explicit limits for the solutions as the small parameter goes to zero.
We consider a class of Sevastyanov branching processes with nonhomogeneous Poisson immigration. These processes relax the assumption required by the Bellman–Harris process which imposes the lifespan and offspring of each individual to be independent. They find applications in studies of the dynamics of cell populations. In this paper we focus on the subcritical case and examine asymptotic properties of the process. We establish limit theorems, which generalize classical results due to Sevastyanov and others. Our key findings include a novel law of large numbers and a central limit theorem which emerge from the nonhomogeneity of the immigration process.
We observe the frog model, an infinite system of interacting random walks, on ℤ with an asymmetric underlying random walk. For certain initial frog distributions we construct an explicit formula for the moments of the leftmost visited site, as well as their asymptotic scaling limits as the drift of the underlying random walk vanishes. We also provide conditions in which the lower bound can be scaled to converge in probability to the degenerate distribution at 1 as the drift vanishes.
The infinite-bin model, introduced by Foss and Konstantopoulos (2003), describes the Markovian evolution of configurations of balls placed inside bins, obeying certain transition rules. We prove that we can couple the behaviour of any finite number of balls, provided at least two different transition rules are allowed. This coupling makes it possible to define the regeneration events needed by Foss and Zachary (2013) to prove convergence results for the distribution of the balls.
We introduce extensions to an infinite-allele branching process that allows for multiple types to exist alongside labels. We consider a Markov branching process and general branching process under different assumptions, and show asymptotic results about the growth of the labels as well as the frequency spectrum. These results are motivated by two separate models. The Markov binary splitting results are motivated by a model of clonal evolution in cancer that considers the effect of both driver and passenger mutations on tumor growth. The general process has applications in viral reproduction and dynamics.
By adding a vorticity matrix to the reversible transition probability matrix, we show that the commute time and average hitting time are smaller than that of the original reversible one. In particular, we give an affirmative answer to a conjecture of Aldous and Fill (2002). Further quantitive properties are also studied for the nonreversible finite Markov chains.
We study a stochastic differential equation driven by a Poisson point process, which models the continuous change in a population's environment, as well as the stochastic fixation of beneficial mutations that might compensate for this change. The fixation probability of a given mutation increases as the phenotypic lag Xt between the population and the optimum grows larger, and successful mutations are assumed to fix instantaneously (leading to an adaptive jump). Our main result is that the process is transient (i.e. converges to -∞, so that continued adaptation is impossible) if the rate of environmental change v exceeds a parameter m, which can be interpreted as the rate of adaptation in case every beneficial mutation becomes fixed with probability 1. If v < m, the process is Harris recurrent and possesses a unique invariant probability measure, while in the limiting case m = v, Harris recurrence with an infinite invariant measure or transience depends upon additional technical conditions. We show how our results can be extended to a class of time varying rates of environmental change.
Batch service has a wide application in manufacturing, communication networks, and cloud computing. In batch service queues with limited resources, one critical issue is to properly schedule the service so as to ensure the quality of service. In this paper we consider an M/G[a,b]/1/N batch service queue with bulking threshold a, max service capacity b, and buffer capacity N, where N can be finite or infinite. Through renewal theory, busy period analysis and decomposition techniques, we demonstrate explicitly how the bulking threshold influences the system performance such as the mean waiting time and time-averaged number of loss customers in batch service queues. We then establish a necessary and sufficient condition on the optimal bulking threshold that minimizes the expected waiting time. Enabled by this condition, we propose a simple algorithm which guarantees to find the optimal threshold in polynomial time. The performance of the algorithm is also demonstrated by numerical examples.
A critical branching process {Zk, k = 0, 1, 2, ...} in a random environment is considered. A conditional functional limit theorem for the properly scaled process {log Zpu, 0 ≤ u < ∞} is established under the assumptions that Zn > 0 and p ≪ n. It is shown that the limiting process is a Lévy process conditioned to stay nonnegative. The proof of this result is based on a limit theorem describing the distribution of the initial part of the trajectories of a driftless random walk conditioned to stay nonnegative.
We present solutions to nonzero-sum games of optimal stopping for Brownian motion in [0, 1] absorbed at either 0 or 1. The approach used is based on the double partial superharmonic characterisation of the value functions derived in Attard (2015). In this setting the characterisation of the value functions has a transparent geometrical interpretation of 'pulling two ropes' above 'two obstacles' which must, however, be constrained to pass through certain regions. This is an extension of the analogous result derived by Peskir (2009), (2012) (semiharmonic characterisation) for the value function in zero-sum games of optimal stopping. To derive the value functions we transform the game into a free-boundary problem. The latter is then solved by making use of the double smooth fit principle which was also observed in Attard (2015). Martingale arguments based on the Itô–Tanaka formula will then be used to verify that the solution to the free-boundary problem coincides with the value functions of the game and this will establish the Nash equilibrium.
We consider a particle system in continuous time, a discrete population, with spatial motion, and nonlocal branching. The offspring's positions and their number may depend on the mother's position. Our setting captures, for instance, the processes indexed by a Galton–Watson tree. Using a size-biased auxiliary process for the empirical measure, we determine the asymptotic behaviour of the particle system. We also obtain a large population approximation as a weak solution of a growth-fragmentation equation. Several examples illustrate our results. The main one describes the behaviour of a mitosis model; the population is size structured. In this example, the sizes of the cells grow linearly and if a cell dies then it divides into two descendants.
We describe the ergodic properties of some Metropolis–Hastings algorithms for heavy-tailed target distributions. The results of these algorithms are usually analyzed under a subgeometric ergodic framework, but we prove that the mixed preconditioned Crank–Nicolson (MpCN) algorithm has geometric ergodicity even for heavy-tailed target distributions. This useful property comes from the fact that, under a suitable transformation, the MpCN algorithm becomes a random-walk Metropolis algorithm.
In the paper we present a novel construction of Marshall–Olkin (MO) multivariate exponential distributions of failure times as distributions of the first-passage times of the coordinates of multidimensional Lévy subordinator processes above independent unit-mean exponential random variables. A time-inhomogeneous version is also given that replaces Lévy subordinators with additive subordinators. An attractive feature of MO distributions for applications, such as to portfolio credit risk, is its singular component that yields positive probabilities of simultaneous defaults of multiple obligors, capturing the default clustering phenomenon. The drawback of the original MO fatal shock construction of MO distributions is that it requires one to simulate 2n-1 independent exponential random variables. In practice, the dimensionality is typically on the order of hundreds or thousands of obligors in a large credit portfolio, rendering the MO fatal shock construction infeasible to simulate. The subordinator construction reduces the problem of simulating a rich subclass of MO distributions to simulating an n-dimensional subordinator. When one works with the class of subordinators constructed from independent one-dimensional subordinators with known transition distributions, such as gamma and inverse Gaussian, or their Sato versions in the additive case, the simulation effort is linear in n. To illustrate, we present a simulation of 100,000 samples of a credit portfolio with 1,000 obligors that takes less than 18 seconds on a PC.
We study certain classes of local sets of the two-dimensional Gaussian free field (GFF) in a simply connected domain, and their relation to the conformal loop ensemble $\text{CLE}_{4}$ and its variants. More specifically, we consider bounded-type thin local sets (BTLS), where thin means that the local set is small in size, and bounded type means that the harmonic function describing the mean value of the field away from the local set is bounded by some deterministic constant. We show that a local set is a BTLS if and only if it is contained in some nested version of the $\text{CLE}_{4}$ carpet, and prove that all BTLS are necessarily connected to the boundary of the domain. We also construct all possible BTLS for which the corresponding harmonic function takes only two prescribed values and show that all these sets (and this includes the case of $\text{CLE}_{4}$) are in fact measurable functions of the GFF.
In a Markov chain started at a state x, the hitting time τ(y) is the first time that the chain reaches another state y. We study the probability $\mathbb{P}_x(\tau(y) = t)$ that the first visit to y occurs precisely at a given time t. Informally speaking, the event that a new state is visited at a large time t may be considered a ‘surprise’. We prove the following three bounds.
• In any Markov chain with n states, $\mathbb{P}_x(\tau(y) = t) \le {n}/{t}$.
• In a reversible chain with n states, $\mathbb{P}_x(\tau(y) = t) \le {\sqrt{2n}}/{t}$ for $t \ge 4n + 4$.
• For random walk on a simple graph with n ≥ 2 vertices, $\mathbb{P}_x(\tau(y) = t) \le 4e \log(n)/t$.
We construct examples showing that these bounds are close to optimal. The main feature of our bounds is that they require very little knowledge of the structure of the Markov chain.
To prove the bound for random walk on graphs, we establish the following estimate conjectured by Aldous, Ding and Oveis-Gharan (private communication): for random walk on an n-vertex graph, for every initial vertex x,
We discuss discrete stochastic processes with two independent variables: one is the standard symmetric random walk, and the other is the Poisson process. Convergence of discrete stochastic processes is analysed, such that the symmetric random walk tends to the standard Brownian motion. We show that a discrete analogue of Ito’s formula converges to the corresponding continuous formula.
We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton–Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated size-biased tree. We then apply this result to give the limit in distribution of a critical Galton–Watson tree conditioned on having a large number of protected nodes.
In this paper we identify three questions concerning the management of risk networks with a central branch, which may be solved using the extensive machinery available for one-dimensional risk models. First, we propose a criterion for judging whether a subsidiary is viable by its readiness to pay dividends to the central branch, as reflected by the optimality of the zero-level dividend barrier. Next, for a deterministic central branch which must bailout a single subsidiary each time its surplus becomes negative, we determine the optimal bailout policy, as well as the ruin probability and other risk measures, in closed form. Moreover, we extend these results to the case of hierarchical networks. Finally, for nondeterministic central branches with one subsidiary, we compute approximate risk measures by applying rational approximations, and by using the recently developed matrix scale methodology.