To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Coalescents with multiple collisions (also called Λ-coalescents or simple exchangeable coalescents) are used as models of genealogies. We study a new class of Markovian coalescent processes connected to a population model with immigration. Consider an infinite population with immigration labelled at each generation by N := {1, 2, …}. Some ancestral lineages cannot be followed backwards after some time because their ancestor is outside the population. The individuals with an immigrant ancestor constitute a distinguished family and we define exchangeable distinguished coalescent processes as a model for genealogy with immigration, focusing on simple distinguished coalescents, i.e. such that when a coagulation occurs all the blocks involved merge as a single block. These processes are characterized by two finite measures on [0, 1] denoted by M = (Λ0, Λ1). We call them M-coalescents. We show by martingale arguments that the condition of coming down from infinity for the M-coalescent coincides with that obtained by Schweinsberg for the Λ-coalescent. In the same vein as Bertoin and Le Gall, M-coalescents are associated with some stochastic flows. The superprocess embedded can be viewed as a generalized Fleming-Viot process with immigration. The measures Λ0 and Λ1 respectively specify the reproduction and the immigration. The coming down from infinity of the M-coalescent will be interpreted as the initial types extinction: after a certain time all individuals are immigrant children.
In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.
Suppose that {Xt} is a Markov chain such as the state space model for a threshold GARCH time series. The regularity assumptions for a drift condition approach to establishing the ergodicity of {Xt} typically are ϕ-irreducibility, aperiodicity, and a minorization condition for compact sets. These can be very tedious to verify due to the discontinuous and singular nature of the Markov transition probabilities. We first demonstrate that, for Feller chains, the problem can at least be simplified to focusing on whether the process can reach some neighborhood that satisfies the minorization condition. The results are valid not just for the transition kernels of Markov chains but also for bounded positive kernels, opening the possibility for new ergodic results. More significantly, we show that threshold GARCH time series and related models of interest can often be embedded into Feller chains, allowing us to apply the conclusions above.
We analyze the mean cost of the partial match queries in random two-dimensional quadtrees. The method is based on fragmentation theory. The convergence is guaranteed by a coupling argument of Markov chains, whereas the value of the limit is computed as the fixed point of an integral equation.
We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate θ, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have independent and identically distributed lifetime durations (nonnecessarily exponential) during which they give birth independently at a constant rate b. First, using spine decomposition, we relax previously known assumptions required for almost-sure convergence of the total population size. Then, we consider three models of structured populations: either all immigrants have a different type, or types are drawn in a discrete spectrum or in a continuous spectrum. In each model, the vector (P1, P2,…) of relative abundances of surviving families converges almost surely. In the first model, the limit is the GEM distribution with parameter θ / b.
We propose an approximation for the inverse first passage time problem. It is similar in spirit and method to the tangent approximation for the original first passage time problem. We provide evidence that the technique is quite accurate in many cases. We also identify some cases where the approximation performs poorly.
This paper is concerned with the definition and calculation of containment probabilities for emerging disease epidemics. A general multitype branching process is used to model an emerging infectious disease in a population of households. It is shown that the containment probability satisfies a certain fixed point equation which has a unique solution under certain conditions; the case of multiple solutions is also described. The extinction probability of the branching process is shown to be a special case of the containment probability. It is shown that Laplace transform ordering of the severity distributions of households in different epidemics yields an ordering on the containment probabilities. The results are illustrated with both standard epidemic models and a specific model for an emerging strain of influenza.
Start with a compact set K ⊂ Rd. This has a random number of daughter sets, each of which is a (rotated and scaled) copy of K and all of which are inside K. The random mechanism for producing daughter sets is used independently on each of the daughter sets to produce the second generation of sets, and so on, repeatedly. The random fractal set F is the limit, as n goes to ∞, of the union of the nth generation sets. In addition, K has a (suitable, random) mass which is divided randomly between the daughter sets, and this random division of mass is also repeated independently, indefinitely. This division of mass will correspond to a random self-similar measure on F. The multifractal spectrum of this measure is studied here. Our main contributions are dealing with the geometry of realisations in Rd and drawing systematically on known results for general branching processes. In this way we generalise considerably the results of Arbeiter and Patzschke (1996) and Patzschke (1997).
Let (Bt)0≤t≤T be either a Bernoulli random walk or a Brownian motion with drift, and let Mt := max{Bs: 0 ≤ s ≤ t}, 0 ≤ t ≤ T. In this paper we solve the general optimal prediction problem sup0≤τ≤TE[f(MT − Bτ], where the supremum is over all stopping times τ adapted to the natural filtration of (Bt) and f is a nonincreasing convex function. The optimal stopping time τ* is shown to be of ‘bang-bang’ type: τ* ≡ 0 if the drift of the underlying process (Bt) is negative and τ* ≡ T if the drift is positive. This result generalizes recent findings of Toit and Peskir (2009) and Yam, Yung and Zhou (2009), and provides additional mathematical justification for the dictum in finance that one should sell bad stocks immediately, but keep good stocks as long as possible.
The numerical analysis of quasi-birth-and-death processes rests on the resolution of a matrix-quadratic equation for which efficient algorithms are known when the matrices have finite order, that is, when the number of phases is finite. In this paper we consider the case of infinitely many phases from the point of view of theoretical convergence of truncation and augmentation schemes, and we develop four different methods. Two methods rely on forced transitions to the boundary. In one of these methods, the transitions occur as a result of the truncation itself, while in the other method, they are artificially introduced so that the augmentation may be chosen to be as natural as possible. Two other methods rely on forced transitions within the same level. We conclude with a brief numerical illustration.
We propose a model for the presence/absence of a population in a collection of habitat patches. This model assumes that colonisation and extinction of the patches occur as distinct phases. Importantly, the local extinction probabilities are allowed to vary between patches. This permits an investigation of the effect of habitat degradation on the persistence of the population. The limiting behaviour of the model is examined as the number of habitat patches increases to ∞. This is done in the case where the number of patches and the initial number of occupied patches increase at the same rate, and for the case where the initial number of occupied patches remains fixed.
The point process of vertices of an iteration infinitely divisible or, more specifically, of an iteration stable random tessellation in the Euclidean plane is considered. We explicitly determine its covariance measure and its pair-correlation function, as well as the cross-covariance measure and the cross-correlation function of the vertex point process and the random length measure in the general nonstationary regime. We also give special formulae in the stationary and isotropic setting. Exact formulae are given for vertex count variances in compact and convex sampling windows, and asymptotic relations are derived. Our results are then compared with those for a Poisson line tessellation having the same length density parameter. Moreover, a functional central limit theorem for the joint process of suitably rescaled total edge counts and edge lengths is established with the process (ξ, tξ), t > 0, arising in the limit, where ξ is a centered Gaussian variable with explicitly known variance.
A simple model for a randomly oscillating variable is suggested, which is a variant of the two-state random velocity model. As in the latter model, the variable keeps rising or falling with constant velocity for some time before randomly reversing its direction. In contrast however, its propensity to reverse depends on its current value and it is for this desirable feature that the model is proposed here. This feature has two implications: (a) neither the changing variable nor its velocity is Markovian, although the joint process is, and (b) the linear differential equations arising in the case of our model do not have constant coefficients. The results given in this paper are meant to illustrate the straightforward nature of some of the calculations involved and to highlight the relationship with one-dimensional diffusions.
In this paper we consider the stochastic analysis of information ranking algorithms of large interconnected data sets, e.g. Google's PageRank algorithm for ranking pages on the World Wide Web. The stochastic formulation of the problem results in an equation of the form where N, Q, {Ri}i≥1, and {C, Ci}i≥1 are independent nonnegative random variables, the {C, Ci}i≥1 are identically distributed, and the {Ri}i≥1 are independent copies of stands for equality in distribution. We study the asymptotic properties of the distribution of R that, in the context of PageRank, represents the frequencies of highly ranked pages. The preceding equation is interesting in its own right since it belongs to a more general class of weighted branching processes that have been found to be useful in the analysis of many other algorithms. Our first main result shows that if ENE[Cα] = 1, α > 0, and Q, N satisfy additional moment conditions, then R has a power law distribution of index α. This result is obtained using a new approach based on an extension of Goldie's (1991) implicit renewal theorem. Furthermore, when N is regularly varying of index α > 1, ENE[Cα] < 1, and Q, C have higher moments than α, then the distributions of R and N are tail equivalent. The latter result is derived via a novel sample path large deviation method for recursive random sums. Similarly, we characterize the situation when the distribution of R is determined by the tail of Q. The preceding approaches may be of independent interest, as they can be used for analyzing other functionals on trees. We also briefly discuss the engineering implications of our results.
Inspired by methods of queueing theory, we propose a Markov model for the spread of viruses in an open population with an exogenous flow of infectives. We apply it to the diffusion of AIDS and hepatitis C diseases among drug users. From a mathematical point of view, the difference between the two viruses is shown in two parameters: the probability of curing the disease (which is 0 for AIDS but positive for hepatitis C) and the infection probability, which seems to be much higher for hepatitis. This model bears some resemblance to the M/M/∞ queueing system and is thus rather different from the models based on branching processes commonly used in the epidemiological literature. We carry out an asymptotic analysis (large initial population) and show that the Markov process is close to the solution of a nonlinear autonomous differential system. We prove both a law of large numbers and a functional central limit theorem to determine the speed of convergence towards the limiting system. The deterministic system itself converges, as time tends to ∞, to an equilibrium point. We then show that the sequence of stationary probabilities of the stochastic models shrinks to a Dirac measure at this point. This means that in a large population and for long-term analysis, we may replace the individual-based microscopic stochastic model with the macroscopic deterministic system without loss of precision. Moreover, we show how to compute the sensitivity of any functional of the Markov process with respect to a slight variation of any parameter of the model. This approach is applied to the spread of diseases among drug users, but could be applied to many other case studies in epidemiology.
In this paper we develop an explicit formula that allows us to compute the first k moments of the random count of a pattern in a multistate sequence generated by a Markov source. We derive efficient algorithms that allow us to deal with any pattern (low or high complexity) in any Markov model (homogeneous or not). We then apply these results to the distribution of DNA patterns in genomic sequences, and we show that moment-based developments (namely Edgeworth's expansion and Gram-Charlier type-B series) allow us to improve the reliability of common asymptotic approximations, such as Gaussian or Poisson approximations.
The purpose of this paper is to study an optimal stopping problem with constraints for a Markov chain with general state space by using the convex analytic approach. The costs are assumed to be nonnegative. Our model is not assumed to be transient or absorbing and the stopping time does not necessarily have a finite expectation. As a consequence, the occupation measure is not necessarily finite, which poses some difficulties in the analysis of the associated linear program. Under a very weak hypothesis, it is shown that the linear problem admits an optimal solution, guaranteeing the existence of an optimal stopping strategy for the optimal stopping problem with constraints.
We describe the processes obtained by time reversal of a class of stationary jump diffusion processes that model the dynamics of genetic variation in populations subject to repeated bottlenecks. Assuming that only one lineage survives each bottleneck, the forward process is a diffusion on [0,1] that jumps to the boundary before diffusing back into the interior. We show that the behavior of the time-reversed process depends on whether the boundaries are accessible to the diffusive motion of the forward process. If a boundary point is inaccessible to the forward diffusion then time reversal leads to a jump diffusion that jumps immediately into the interior whenever it arrives at that point. If, instead, a boundary point is accessible then the jumps off of that point are governed by a weighted local time of the time-reversed process.
This paper deals with continuous-time Markov decision processes in Polish spaces, under the discounted and average cost criteria. All underlying Markov processes are determined by given transition rates which are allowed to be unbounded, and the costs are assumed to be bounded below. By introducing an occupation measure of a randomized Markov policy and analyzing properties of occupation measures, we first show that the family of all randomized stationary policies is ‘sufficient’ within the class of all randomized Markov policies. Then, under the semicontinuity and compactness conditions, we prove the existence of a discounted cost optimal stationary policy by providing a value iteration technique. Moreover, by developing a new average cost, minimum nonnegative solution method, we prove the existence of an average cost optimal stationary policy under some reasonably mild conditions. Finally, we use some examples to illustrate applications of our results. Except that the costs are assumed to be bounded below, the conditions for the existence of discounted cost (or average cost) optimal policies are much weaker than those in the previous literature, and the minimum nonnegative solution approach is new.
We propose a new method to obtain the boundary crossing probabilities or the first passage time distribution for linear and nonlinear boundaries for Brownian motion. The method also covers certain classes of stochastic processes associated with Brownian motion. The basic idea of the method is based on being able to construct a finite Markov chain, and the boundary crossing probability of Brownian motion is cast as the limiting probability of the finite Markov chain entering a set of absorbing states induced by the boundaries. Error bounds are obtained. Numerical results for various types of boundary studied in the literature are provided in order to illustrate our method.