To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by Feller's coin-tossing problem, we consider the problem of conditioning an irreducible Markov chain never to wait too long at 0. Denoting by τ the first time that the chain, X, waits for at least one unit of time at the origin, we consider conditioning the chain on the event (τ›T). We show that there is a weak limit as T→∞ in the cases where either the state space is finite or X is transient. We give sufficient conditions for the existence of a weak limit in other cases and show that we have vague convergence to a defective limit if the time to hit zero has a lighter tail than τ and τ is subexponential.
We consider an infinite sequence of customers of types and an infinite sequence of servers of types where a server of type j can serve a subset of customer types C(j) and where a customer of type i can be served by a subset of server types S(i). We assume that the types of customers and servers in the infinite sequences are random, independent, and identically distributed, and that customers and servers are matched according to their order in the sequence, on a first-come–first-served (FCFS) basis. We investigate this process of infinite bipartite matching. In particular, we are interested in the rate ri,j that customers of type i are assigned to servers of type j. We present a countable state Markov chain to describe this process, and for some previously unsolved instances, we prove ergodicity and existence of limiting rates, and calculate ri,j.
In this paper we are concerned with the equilibrium distribution ∏n of the nth element in a sequence of continuous-time density-dependent Markov processes on the integers. Under a (2+α)th moment condition on the jump distributions, we establish a bound of order O(n-(α+1)/2√logn) on the difference between the point probabilities of ∏n and those of a translated Poisson distribution with the same variance. Except for the factor √logn, the result is as good as could be obtained in the simpler setting of sums of independent, integer-valued random variables. Our arguments are based on the Stein-Chen method and coupling.
In this paper we study a generalized Pólya urn with balls of two colors and a random triangular replacement matrix. We extend some results of Janson (2004), (2005) to the case where the largest eigenvalue of the mean of the replacement matrix is not in the dominant class. Using some useful martingales and the embedding method introduced in Athreya and Karlin (1968), we describe the asymptotic composition of the urn after the nth draw, for large n.
Gaweł and Kimmel (1996) introduced and studied iterated Galton–Watson processes, (Xn)n≥0, possibly with thinning, as models of the number of repeats of DNA triplets during some genetic disorders. Our main results are the following. If the process indeed involves some thinning then extinction, {Xn→0}, and explosion, {Xn→∞}, can have positive probability simultaneously. If the underlying (simple) Galton–Watson process is nondecreasing with mean m then, conditionally on explosion, the ratios (log Xn+1)/Xn converge to logm almost surely. This simplifies the arguments of Gaweł and Kimmel, and confirms and extends a conjecture of Pakes (2003).
In this paper, a stochastic integral of Ornstein–Uhlenbeck type is represented to be the sum of two independent random variables: one has a tempered stable distribution and the other has a compound Poisson distribution. In distribution, the compound Poisson random variable is equal to the sum of a Poisson-distributed number of positive random variables, which are independent and identically distributed and have a common specified density function. Based on the representation of the stochastic integral, we prove that the transition distribution of the tempered stable Ornstein–Uhlenbeck process is self-decomposable and that the transition density is a C∞-function.
Just after the fixation of an advantageous allele in the population (this spread is called a selective sweep), the neutral genes close to the site under selection tend to have the same ancestor as the gene under selection. However, some recombinations may occur during the selective sweep and break the link, which reduces the number of hitchhiking alleles. We consider a large selection coefficient α and extend the results of Etheridge, Pfaffelhuber and Wakolbinger (2006) and the work of Pfaffelhuber and Studeny (2007) about genetic hitchhiking, where the recombination rate scales with α/log α. We first describe the genealogy at an arbitrary number of partially linked neutral loci, with an order of accuracy of in total variation. Then, we use this framework to obtain an approximate distribution for the size of the hitchhiking set at the end of the selective sweep, with the same accuracy.
An occupancy problem with an infinite number of bins and a random probability vector for the locations of the balls is considered. The respective sizes of the bins are related to the split times of a Yule process. The asymptotic behavior of the landscape of the first empty bins, i.e. the set of corresponding indices represented by point processes, is analyzed and convergences in distribution to mixed Poisson processes are established. Additionally, the influence of the random environment, the random probability vector, is analyzed. It is represented by two main components: an independent, identically distributed sequence and a fixed random variable. Each of these components has a specific impact on the qualitative behavior of the stochastic model. It is shown in particular that, for some values of the parameters, some rare events, which are identified, determine the asymptotic behavior of the average values of the number of empty bins in some regions.
In Lyons, Pemantle and Peres (1995), a martingale change of measure method was developed in order to give an alternative proof of the Kesten–Stigum L log L theorem for single-type branching processes. Later, this method was extended to prove the L log L theorem for multiple- and general multiple-type branching processes in Biggins and Kyprianou (2004), Kurtz et al. (1997), and Lyons (1997). In this paper we extend this method to a class of superdiffusions and establish a Kesten–Stigum L log L type theorem for superdiffusions. One of our main tools is a spine decomposition of superdiffusions, which is a modification of the one in Englander and Kyprianou (2004).
In this paper we study m-discount optimality (m ≥ −1) and Blackwell optimality for a general class of controlled (Markov) diffusion processes. To this end, a key step is to express the expected discounted reward function as a Laurent series, and then search certain control policies that lexicographically maximize the mth coefficient of this series for m = −1,0,1,…. This approach naturally leads to m-discount optimality and it gives Blackwell optimality in the limit as m → ∞.
In this paper we consider the splitting method first introduced in rare event analysis. In this technique, the sample paths are split into R multiple copies at various stages to speed up the simulation. Given the cost, the optimization of the algorithm suggests taking all the transition probabilities to be equal; nevertheless, in practice, these quantities are unknown. We address this problem by presenting an algorithm in two phases.
In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area) (T) covered by the process in the time interval [0,T]. The Laplace transform of (T) follows as a consequence. The main proof involves a double Laplace transform of (T) and is based on excursion theory and local time for Brownian motion.
In a homogeneous continuous-time Markov chain on a finite state space, two states that jump to every other state with the same rate are called similar. By partitioning states into similarity classes, the algebraic derivation of the transition matrix can be simplified, using hidden holding times and lumped Markov chains. When the rate matrix is reversible, the transition matrix is explicitly related in an intuitive way to that of the lumped chain. The theory provides a unified derivation for a whole range of useful DNA base substitution models, and a number of amino acid substitution models.
In this paper we prove that a sequence of scaled generalized Jiřina processes can converge weakly to a nonlinear diffusion process with Lévy jumps under certain conditions.
The standard Markov chain Monte Carlo method of estimating an expected value is to generate a Markov chain which converges to the target distribution and then compute correlated sample averages. In many applications the quantity of interest θ is represented as a product of expected values, θ = µ1 ⋯ µk, and a natural estimator is a product of averages. To increase the confidence level, we can compute a median of independent runs. The goal of this paper is to analyze such an estimator , i.e. an estimator which is a ‘median of products of averages’ (MPA). Sufficient conditions are given for to have fixed relative precision at a given level of confidence, that is, to satisfy . Our main tool is a new bound on the mean-square error, valid also for nonreversible Markov chains on a finite state space.
In the context of a dividend barrier strategy (see, e.g. Lin, Willmot and Drekic (2003)) we analyze the moments of the discounted dividend payments and the expected discounted penalty function for surplus processes with claims arriving according to a Markovian arrival process (MAP). We show that a relationship similar to the dividend-penalty identity of Gerber, Lin and Yang (2006) can be established for the class of perturbed MAP surplus processes, extending in the process some results of Li and Lu (2008) for the Markov-modulated risk model. Also, we revisit the same ruin-related quantities in an identical MAP risk model with the only exception that the barrier level effective at time t depends on the state of the underlying environment at this time. Similar relationships are investigated and derived. Numerical examples are also considered.
In this paper we consider a class of quasi-birth-and-death processes for which explicit solutions can be obtained for the rate matrix R and the associated matrix G. The probabilistic interpretations of these matrices allow us to describe their elements in terms of paths on the two-dimensional lattice. Then determining explicit expressions for the matrices becomes equivalent to solving a lattice path counting problem, the solution of which is derived using path decomposition, Bernoulli excursions, and hypergeometric functions. A few applications are provided, including classical models for which we obtain some new results.
The speed of extinction for some generalized Jiřina processes {Xn} is discussed. We first discuss the geometric speed. Under some mild conditions, the results reveal that the sequence {cn}, where c does not equal the pseudo-drift parameter at x = 0, cannot estimate the speed of extinction accurately. Then the general case is studied. We determine a group of sufficient conditions such that Xn/cn, with a suitable constant cn, converges almost surely as n → ∞ to a proper, nondegenerate random variable. The main tools used in this paper are exponent martingales and stochastic growth models.
In the framework of a multitype Bienaymé–Galton–Watson (BGW) process, the event that the daughter's type differs from the mother's type can be viewed as a mutation event. Assuming that mutations are rare, we study a situation where all types except one produce on average less than one offspring. We establish a neat asymptotic structure for the BGW process escaping extinction due to a sequence of mutations toward the supercritical type. Our asymptotic analysis is performed by letting mutation probabilities tend to 0. The limit process, conditional on escaping extinction, is another BGW process with an enriched set of types, allowing us to delineate a stem lineage of particles that leads toward the escape event. The stem lineage can be described by a simple Markov chain on the set of particle types. The total time to escape becomes a sum of a random number of independent, geometrically distributed times spent at intermediate types.
In this paper we explore the impact of imitation rules on players' long-run behaviors in evolutionary prisoner's dilemma games. All players sit sequentially and equally spaced around a circle. Players are assumed to interact only with their neighbors, and to imitate either their successful neighbors and/or themselves or the successful actions taken by their neighbors and/or themselves. In the imitating-successful-player dynamics, full defection is the unique long-run equilibrium as the probability of players' experimentations (or mutations) tend to 0. By contrast, full cooperation could emerge in the long run under the imitating-successful-action dynamics. Moreover, it is discovered that the convergence rate to equilibrium under local interaction could be slower than that under global interaction.