To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide sufficient conditions which ensure that the intrinsic martingale in the supercritical branching random walk converges exponentially fast to its limit. We include in particular the case of Galton-Watson processes so that our results can be seen as a generalization of a result given in the classical treatise by Asmussen and Hering (1983). As an auxiliary tool, we prove ultimate versions of two results concerning the exponential renewal measures which may be of interest in themselves and which correct, generalize, and simplify some earlier works.
On the boundary of a Galton-Watson tree we can define the visibility measure by splitting mass equally between the children of each vertex, and the branching measure by splitting unit mass equally between all vertices in the nth generation and then letting n go to infinity. The multifractal structure of each of these measures is well studied. In this paper we address the question of a joint multifractal spectrum, i.e. we ask for the Hausdorff dimension of the boundary points which simultaneously have an unusual local dimension for both these measures. The resulting two-parameter spectrum exhibits a number of surprising new features, among them the emergence of a swallowtail-shaped spectrum for the visibility measure in the presence of a nontrivial condition on the branching measure.
We consider an M/G/1 queue in which an arriving customer does not enter the system whenever its virtual waiting time, i.e. the amount of work seen upon arrival, is larger than a certain random patience time. We determine the busy period distribution for various choices of the patience time distribution. The main cases under consideration are exponential patience and a discrete patience distribution.
Consider a monoecious diploid population with nonoverlapping generations, whose size varies with time according to an irreducible, aperiodic Markov chain with states x1N,…,xKN, where K ≪ N. It is assumed that all matings except for selfing are possible and equally probable. At time 0 a random sample of n ≪ N genes is taken. Given two successive population sizes xjN and xiN, the numbers of gametes that individual parents contribute to offspring can be shown to be exchangeable random variables distributed as Gij. Under minimal conditions on the first three moments of Gij for all i and j, a suitable effective population size Ne is derived. Then if time is recorded in a backward direction in units of 2Ne generations, it can be shown that coalescent theory holds.
We apply Stein's method for probabilistic approximation by a compound geometric distribution, with applications to Markov chain hitting times and sequence patterns. Bounds on our Stein operator are found using a complex analytical approach based on generating functions and Cauchy's formula.
A new approach to the solution of optimal stopping problems for one-dimensional diffusions is developed. It arises by imbedding the stochastic problem in a linear programming problem over a space of measures. Optimizing over a smaller class of stopping rules provides a lower bound on the value of the original problem. Then the weak duality of a restricted form of the dual linear program provides an upper bound on the value. An explicit formula for the reward earned using a two-point hitting time stopping rule allows us to prove strong duality between these problems and, therefore, allows us to either optimize over these simpler stopping rules or to solve the restricted dual program. Each optimization problem is parameterized by the initial value of the diffusion and, thus, we are able to construct the value function by solving the family of optimization problems. This methodology requires little regularity of the terminal reward function. When the reward function is smooth, the optimal stopping locations are shown to satisfy the smooth pasting principle. The procedure is illustrated using two examples.
In 1990, Ramaswami proved that, given a Markov renewal process of M/G/1 type, it is possible to construct a Markov renewal process of GI/M/1 type such that the matrix transforms G(z, s) for the M/G/1-type process and R(z, s) for the GI/M/1-type process satisfy a duality relationship. In his 1996 PhD thesis, Bright used time reversal arguments to show that it is possible to define a different dual for positive-recurrent and transient processes of M/G/1 type and GI/M/1 type. Here we compare the properties of the Ramaswami and Bright dual processes and show that the Bright dual has desirable properties that can be exploited in the design of algorithms for the analysis of Markov chains of GI/M/1 type and M/G/1 type.
The aim of this paper is to study the stochastic monotonicity and continuity properties of the extinction time of Bellman-Harris branching processes depending on their reproduction laws. Moreover, we show their applications in an epidemiological context, obtaining an optimal criterion to establish the proportion of susceptible individuals in a given population that must be vaccinated in order to eliminate an infectious disease. First the spread of infection is modelled by a Bellman-Harris branching process. Finally, we provide a simulation-based method to determine the optimal vaccination policies.
Geometric convergence to 0 of the probability that the goal has not been encountered by the nth generation is established for a class of genetic algorithms. These algorithms employ a quickly decreasing mutation rate and a crossover which restarts the algorithm in a controlled way depending on the current population and restricts execution of this crossover to occasions when progress of the algorithm is too slow. It is shown that without the crossover studied here, which amounts to a tempered restart of the algorithm, the asserted geometric convergence need not hold.
We introduce a class of discrete-time two-sex branching processes where the offspring probability distribution and the mating function are governed by an environmental process. It is assumed that the environmental process is formed by independent but not necessarily identically distributed random vectors. For such a class, we determine some relationships among the probability generating functions involved in the mathematical model and derive expressions for the main moments. Also, by considering different probabilistic approaches we establish several results concerning the extinction probability. A simulated example is presented as an illustration.
Conditioning independent and identically distributed bond percolation with retention parameter p on a one-dimensional periodic lattice on the event of having a bi-infinite path from -∞ to ∞ is shown to make sense, and the resulting model exhibits a Markovian structure that facilitates its analysis. Stochastic monotonicity in p turns out to fail in general for this model, but a weaker monotonicity property does hold: the average edge density is increasing in p.
We consider a branching model for a population of dividing cells infected by parasites. Each cell receives parasites by inheritance from its mother cell and independent contamination from outside the cell population. Parasites multiply randomly inside the cell and are shared randomly between the two daughter cells when the cell divides. The law governing the number of parasites which contaminate a given cell depends only on whether the cell is already infected or not. We first determine the asymptotic behavior of branching processes in a random environment with state-dependent immigration, which gives the convergence in distribution of the number of parasites in a cell line. We then derive a law of large numbers for the asymptotic proportions of cells with a given number of parasites. The main tools are branching processes in a random environment and laws of large numbers for a Markov tree.
In the spirit of Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) we consider a Lévy insurance risk model with tax payments of a more general structure than in the aforementioned papers, which was also considered in Albrecher, Borst, Boxma, and Resing (2009). In terms of scale functions, we establish three fundamental identities of interest which have stimulated a large volume of actuarial research in recent years. That is to say, the two-sided exit problem, the net present value of tax paid until ruin, as well as a generalized version of the Gerber–Shiu function. The method we appeal to differs from Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) in that we appeal predominantly to excursion theory.
The general stochastic SIR epidemic in a closed population under the influence of a term-time forced environment is considered. An ‘environment’ in this context is any external factor that influences the contact rate between individuals in the population, but is itself unaffected by the population. Here ‘term-time forcing’ refers to discontinuous but cyclic changes in the contact rate. The inclusion of such an environment into the model is done by replacing a single contact rate λ with a cyclically alternating renewal process with k different states denoted {Λ(t)}t≥0. Threshold conditions in terms of R⋆ are obtained, such that R⋆>1 implies that π, the probability of a large outbreak, is strictly positive. Examples are given where π is evaluated numerically from which the impact of the distribution of the time periods that Λ(t) spends in its different states is clearly seen.
Let {Zt}t≥0 be a Lévy process with Lévy measure ν, and let τ(t)=∫0tr(u) d u, where {r(t)}t≥0 is a positive ergodic diffusion independent from Z. Based upon discrete observations of the time-changed Lévy process Xt≔Zτt during a time interval [0,T], we study the asymptotic properties of certain estimators of the parameters β(φ)≔∫φ(x)ν(d x), which in turn are well known to be the building blocks of several nonparametric methods such as sieve-based estimation and kernel estimation. Under uniform boundedness of the second moments of r and conditions on φ necessary for the standard short-term ergodic property limt→ 0 E φ(Zt)/t = β(φ) to hold, consistency and asymptotic normality of the proposed estimators are ensured when the time horizon T increases in such a way that the sampling frequency is high enough relative to T.
This work is concerned with the existence of an optimal control strategy for the long-run average continuous control problem of piecewise-deterministic Markov processes (PDMPs). In Costa and Dufour (2008), sufficient conditions were derived to ensure the existence of an optimal control by using the vanishing discount approach. These conditions were mainly expressed in terms of the relative difference of the α-discount value functions. The main goal of this paper is to derive tractable conditions directly related to the primitive data of the PDMP to ensure the existence of an optimal control. The present work can be seen as a continuation of the results derived in Costa and Dufour (2008). Our main assumptions are written in terms of some integro-differential inequalities related to the so-called expected growth condition, and geometric convergence of the post-jump location kernel associated to the PDMP. An example based on the capacity expansion problem is presented, illustrating the possible applications of the results developed in the paper.
The waste-recycling Monte Carlo (WRMC) algorithm introduced by physicists is a modification of the (multi-proposal) Metropolis–Hastings algorithm, which makes use of all the proposals in the empirical mean, whereas the standard (multi-proposal) Metropolis–Hastings algorithm uses only the accepted proposals. In this paper we extend the WRMC algorithm to a general control variate technique and exhibit the optimal choice of the control variate in terms of the asymptotic variance. We also give an example which shows that, in contradiction to the intuition of physicists, the WRMC algorithm can have an asymptotic variance larger than that of the Metropolis–Hastings algorithm. However, in the particular case of the Metropolis–Hastings algorithm called the Boltzmann algorithm, we prove that the WRMC algorithm is asymptotically better than the Metropolis–Hastings algorithm. This last property is also true for the multi-proposal Metropolis–Hastings algorithm. In this last framework we consider a linear parametric generalization of WRMC, and we propose an estimator of the explicit optimal parameter using the proposals.
We derive a moderate deviation principle for word counts (which is extended to counts of multiple patterns) in biological sequences under different models: independent and identically distributed letters, homogeneous Markov chains of order 1 and m, and, in view of the codon structure of DNA sequences, Markov chains with three different transition matrices. This enables us to approximate P-values for the number of word occurrences in DNA and protein sequences in a new manner.
The goal of this paper is to provide formulae for the expectation and variance of the height and length of the ancestral recombination graph (ARG). While the formula for the expectation of the height is known (see, e.g. Krone and Neuhauser (1997)), the other formulae seem to be new. We obtain in particular (see Theorem 4.1) a very simple formula which expresses the expectation of the length of the ARG as a linear combination of the expectations of both the length of the coalescent tree and the height of the ARG. Finally, we study the speed at which the ARG comes down from infinity.
In this paper we consider a stochastic SIR (susceptible→infective→removed) epidemic model in which individuals may make infectious contacts in two ways, both within ‘households’ (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly sized finite populations. The extension to unequal-sized households is discussed briefly.