We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note we provide a simple alternative probabilistic derivation of an explicit formula of Kwan and Yang (2007) for the probability of ruin in a risk model with a certain dependence between general claim interoccurrence times and subsequent claim sizes of conditionally exponential type. The approach puts the type of formula in a general context, illustrating the potential for similar simple ruin probability expressions in more general risk models with dependence.
In this work we consider the mean-field traveling salesman problem, where the intercity distances are taken to be independent and identically distributed with some distribution F. We consider the simplest approximation algorithm, namely, the nearest-neighbor algorithm, where the rule is to move to the nearest nonvisited city. We show that the limiting behavior of the total length of the nearest-neighbor tour depends on the scaling properties of the density of F at 0 and derive the limits for all possible cases of general F.
In the present paper, we study the evolution of an overloaded cyclic polling model that starts empty. Exploiting a connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches between the queues infinitely many times in any finite time interval causing frequent oscillatory behavior of the fluid limit in the neighborhood of zero. Moreover, the fluid limit is random. In addition, we suggest a method that establishes finiteness of moments of the busy period in an M/G/1 queue.
Both small-world models of random networks with occasional long-range connections and gossip processes with occasional long-range transmission of information have similar characteristic behaviour. The long-range elements appreciably reduce the effective distances, measured in space or in time, between pairs of typical points. In this paper we show that their common behaviour can be interpreted as a product of the locally branching nature of the models. In particular, it is shown that both typical distances between points and the proportion of space that can be reached within a given distance or time can be approximated by formulae involving the limit random variable of the branching process.
In this paper we study the fractional moments of the stationary solution to the stochastic recurrence equation Xt = AtXt−1 + Bt, t ∈ Z, where ((At, Bt))t∈Z is an independent and identically distributed bivariate sequence. We derive recursive formulae for the fractional moments E|X0|p, p ∈ R. Special attention is given to the case when Bt has an Erlang distribution. We provide various approximations to the moments E|X0|p and show their performance in a small numerical study.
A probabilistic cellular automaton (PCA) can be viewed as a Markov chain. The cells are updated synchronously and independently, according to a distribution depending on a finite neighborhood. We investigate the ergodicity of this Markov chain. A classical cellular automaton is a particular case of PCA. For a one-dimensional cellular automaton, we prove that ergodicity is equivalent to nilpotency, and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property of the local rule. It is based on a bounding process which is shown to also be a PCA. Last, we focus on the PCA majority, whose asymptotic behavior is unknown, and perform numerical experiments using the perfect sampling procedure.
This article is concerned with a stochastic multipatch model in which each local population is subject to a strong Allee effect. The model is obtained by using the framework of interacting particle systems to extend a stochastic two-patch model that was recently introduced by Kang and the author. The main objective is to understand the effect of the geometry of the network of interactions, which represents potential migrations between patches, on the long-term behavior of the metapopulation. In the limit as the number of patches tends to ∞, there is a critical value for the Allee threshold below which the metapopulation expands and above which the metapopulation goes extinct. Spatial simulations on large regular graphs suggest that this critical value strongly depends on the initial distribution when the degree of the network is large, whereas the critical value does not depend on the initial distribution when the degree is small. Looking at the system starting with a single occupied patch on the complete graph and on the ring, we prove analytical results that support this conjecture. From an ecological perspective, these results indicate that, upon arrival of an alien species subject to a strong Allee effect to a new area, though dispersal is necessary for its expansion, fast long-range dispersal drives the population toward extinction.
Using a characterizing equation for the beta distribution, Stein's method is applied to obtain bounds of the optimal order for the Wasserstein distance between the distribution of the scaled number of white balls drawn from a Pólya-Eggenberger urn and its limiting beta distribution. The bound is computed by making a direct comparison between characterizing operators of the target and the beta distribution, the former derived by extending Stein's density approach to discrete distributions. In addition, refinements are given to Döbler's (2012) result for the arcsine approximation for the fraction of time a simple random walk of even length spends positive, and so also to the distributions of its last return time to 0 and its first visit to its terminal point, by supplying explicit constants to the present Wasserstein bound and also demonstrating that its rate is of the optimal order.
We consider possibly nonlinear distributional fixed-point equations on weighted branching trees, which include the well-known linear branching recursion. In Jelenković and Olvera-Cravioto (2012), an implicit renewal theorem was developed that enables the characterization of the power-tail asymptotics of the solutions to many equations that fall into this category. In this paper we complement the analysis in our 2012 paper to provide the corresponding rate of convergence.
The signature of a system is defined as the vector whose ith element is the probability that the system fails concurrently with the ith component failure. The signature vector is known to be a distribution-free measure and a representation of the system's survival function has been developed in terms of the system's signature. The present work is devoted to the study of the joint distribution of lifetimes of pairs of systems with shared components. Here, a new distribution-free measure, the ‘joint bivariate signature’, of a pair of systems with shared components is defined, and a new representation theorem for the joint survival function of the system lifetimes is established. The theorem is shown to facilitate the study of the dependence between systems and the comparative performance of two pairs of such systems.
The objective of this paper is to give a rigorous analysis of a stochastic spatial model of producer-consumer systems that has been recently introduced by Kang and the author to understand the role of space in ecological communities in which individuals compete for resources. Each point of the square lattice is occupied by an individual which is characterized by one of two possible types, and updates its type in continuous time at rate 1. Each individual being thought of as a producer and consumer of resources, the new type at each update is chosen at random from a certain interaction neighborhood according to probabilities proportional to the ability of the neighbors to consume the resource produced by the individual to be updated. In addition to giving a complete qualitative picture of the phase diagram of the spatial model, our results indicate that the nonspatial deterministic mean-field approximation of the stochastic process fails to describe the behavior of the system in the presence of local interactions. In particular, we prove that, in the parameter region where the nonspatial model displays bistability, there is a dominant type that wins regardless of its initial density in the spatial model, and that the inclusion of space also translates into a significant reduction of the parameter region where both types coexist.
We consider a random trial-based telegraph process, which describes a motion on the real line with two constant velocities along opposite directions. At each epoch of the underlying counting process the new velocity is determined by the outcome of a random trial. Two schemes are taken into account: Bernoulli trials and classical Pólya urn trials. We investigate the probability law of the process and the mean of the velocity of the moving particle. We finally discuss two cases of interest: (i) the case of Bernoulli trials and intertimes having exponential distributions with linear rates (in which, interestingly, the process exhibits a logistic stationary density with nonzero mean), and (ii) the case of Pólya trials and intertimes having first gamma and then exponential distributions with constant rates.
Many regenerative arguments in stochastic processes use random times which are akin to stopping times, but which are determined by the future as well as the past behaviour of the process of interest. Such arguments based on ‘conditioning on the future’ are usually developed in an ad-hoc way in the context of the application under consideration, thereby obscuring the underlying structure. In this paper we give a simple, unified, and more general treatment of such conditioning theory. We further give a number of novel applications to various particle system models, in particular to various flavours of contact processes and to infinite-bin models. We give a number of new results for existing and new models. We further make connections with the theory of Harris ergodicity.
We consider the problem of reducing the response time of fork-join systems by maintaining the workload balanced among the processing stations. The general problem of modeling and finding an optimal policy that reduces imbalance is quite difficult. In order to circumvent this difficulty, the heavy traffic approach is taken, and the system dynamics are approximated by a reflected diffusion process. This way, the problem of finding an optimal balancing policy that reduces workload imbalance is set as a stochastic optimal control problem, for which numerical methods are available. Some numerical experiments are presented, where the control problem is solved numerically and applied to a simulation. The results indicate that the response time of the controlled system is reduced significantly using the devised control.
Inequalities for spatial competition verify the pair approximation of statistical mechanics introduced to theoretical ecology by Matsuda, Satō and Iwasa, among others. Spatially continuous moment equations were introduced by Bolker and Pacala and use a similar assumption in derivation. In the present article, I prove upper bounds for the $k\mathrm{th} $ central moment of occupied sites in the contact process of a single spatial dimension. This result shows why such moment closures are effective in spatial ecology.
We present a new model for seed banks, where direct ancestors of individuals may have lived in the near as well as the very far past. The classical Wright‒Fisher model, as well as a seed bank model with bounded age distribution considered in Kaj, Krone and Lascoux (2001) are special cases of our model. We discern three parameter regimes of the seed bank age distribution, which lead to substantially different behaviour in terms of genetic variability, in particular with respect to fixation of types and time to the most recent common ancestor. We prove that, for age distributions with finite mean, the ancestral process converges to a time-changed Kingman coalescent, while in the case of infinite mean, ancestral lineages might not merge at all with positive probability. Furthermore, we present a construction of the forward-in-time process in equilibrium. The mathematical methods are based on renewal theory, the urn process introduced in Kaj, Krone and Lascoux (2001) as well as on a paper by Hammond and Sheffield (2013).
We consider partial customer flexibility in service systems under two different designs. In the first design, flexible customers have their own queue and each server has its own queue of dedicated customers. Under this model, the problem is a scheduling problem and we show under various settings that the dedicated customers first (DCF) policy is optimal. In the second design, flexible customers are not queued separately and must be routed to one of the server's dedicated queues upon arrival. We extend earlier results about the ‘join the smallest work (JSW)’ policy to systems with dedicated as well as flexible arrivals. We compare these models to a routeing model in which only the queue length is available in terms of both efficiency and fairness and argue that the overall best approach for call centers is JSW routeing. We also discuss how this can be implemented in call centers even when work is unknown.
We consider a host-parasite model for a population of cells that can be of two types, A or B, and exhibits unilateral reproduction: while a B-cell always splits into two cells of the same type, the two daughter cells of an A-cell can be of any type. The random mechanism that describes how parasites within a cell multiply and are then shared into the daughter cells is allowed to depend on the hosting mother cell as well as its daughter cells. Focusing on the subpopulation of A-cells and its parasites, our model differs from the single-type model recently studied by Bansaye (2008) in that the sharing mechanism may be biased towards one of the two types. Our main results are concerned with the nonextinctive case and provide information on the behavior, as n → ∞, of the number of A-parasites in generation n and the relative proportion of A- and B-cells in this generation which host a given number of parasites. As in Bansaye (2008), proofs will make use of a so-called random cell line which, when conditioned to be of type A, behaves like a branching process in a random environment.
We derive factorization identities for a class of preemptive-resume queueing systems, with batch arrivals and catastrophes that, whenever they occur, eliminate multiple customers present in the system. These processes are quite general, as they can be used to approximate Lévy processes, diffusion processes, and certain types of growth‒collapse processes; thus, all of the processes mentioned above also satisfy similar factorization identities. In the Lévy case, our identities simplify to both the well-known Wiener‒Hopf factorization, and another interesting factorization of reflected Lévy processes starting at an arbitrary initial state. We also show how the ideas can be used to derive transforms for some well-known state-dependent/inhomogeneous birth‒death processes and diffusion processes.
The asymptotic variance of the sample mean of a homogeneous Poisson marked point process has been studied in the literature, but confusion has arisen as to the correct expression due to some technical intricacies. This note sets the record straight with regards to the variance of the sample mean. In addition, a central limit theorem in the general d-dimensional case is also established.