We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study the augmented truncation of discrete-time block-monotone Markov chains under geometric drift conditions. We first present a bound for the total variation distance between the stationary distributions of an original Markov chain and its augmented truncation. We also obtain such error bounds for more general cases, where an original Markov chain itself is not necessarily block monotone but is blockwise dominated by a block-monotone Markov chain. Finally, we discuss the application of our results to GI/G/1-type Markov chains.
A large-scale service system with multiple customer classes and multiple server pools is considered, with the mean service time depending both on the customer class and server pool. The allowed activities (routeing choices) form a tree (in the graph with vertices being both customer classes and server pools). We study the behavior of the system under a leaf activity priority (LAP) policy, introduced by Stolyar and Yudovina (2012). An asymptotic regime is considered, where the arrival rate of customers and number of servers in each pool tend to ∞ in proportion to a scaling parameter r, while the overall system load remains strictly subcritical. We prove tightness of diffusion-scaled (centered at the equilibrium point and scaled down by r−1/2) invariant distributions. As a consequence, we obtain a limit interchange result: the limit of diffusion-scaled invariant distributions is equal to the invariant distribution of the limiting diffusion process.
This paper demonstrates the occurrence of the feature called BRAVO (balancing reduces asymptotic variance of output) for the departure process of a finite-buffer Markovian many-server system in the QED (quality and efficiency-driven) heavy-traffic regime. The results are based on evaluating the limit of an equation for the asymptotic variance of death counts in finite birth-death processes.
We study the asymptotics of a Markovian system of N ≥ 3 particles in [0, 1]d in which, at each step in discrete time, the particle farthest from the current centre of mass is removed and replaced by an independent U[0, 1]d random particle. We show that the limiting configuration contains N − 1 coincident particles at a random location ξN ∈ [0, 1]d. A key tool in the analysis is a Lyapunov function based on the squared radius of gyration (sum of squared distances) of the points. For d = 1, we give additional results on the distribution of the limit ξN, showing, among other things, that it gives positive probability to any nonempty interval subset of [0, 1], and giving a reasonably explicit description in the smallest nontrivial case, N = 3.
In this paper we study the speed of infection spread and the survival of the contact process in the random geometric graph G = G(n, rn, f) of n nodes independently distributed in S = [-½, ½]2 according to a certain density f(·). In the first part of the paper we assume that infection spreads from one node to another at unit rate and that infected nodes stay in the same state forever. We provide an explicit lower bound on the speed of infection spread and prove that infection spreads in G with speed at least D1nrn2. In the second part of the paper we consider the contact process ξt on G where infection spreads at rate λ > 0 from one node to another and each node independently recovers at unit rate. We prove that, for every λ > 0, with high probability, the contact process on G survives for an exponentially long time; there exist positive constants c1 and c2 such that, with probability at least 1 - c1 / n4, the contact process starting with all nodes infected survives up to time tn = exp(c2n/logn) for all n.
We consider a queueing loss system with heterogeneous skill based servers with arbitrary service distributions. We assume Poisson arrivals, with each arrival having a vector indicating which of the servers are eligible to serve it. An arrival can only be assigned to a server that is both idle and eligible. Assuming exchangeable eligibility vectors and an idle time ordering assignment policy, the limiting distribution of the system is derived. It is shown that the limiting probabilities of the set of idle servers depend on the service time distributions only through their means. Moreover, conditional on the set of idle servers, the remaining service times of the busy servers are independent and have their respective equilibrium service distributions.
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}$d with random initial configurations. Formally, we are given a set $\mathcal{U}$ = {X1,. . . , Xm} of finite subsets of $\mathbb{Z}$d \ {0}, and an initial set A0 ⊂ $\mathbb{Z}$d of ‘infected’ sites, which we take to be random according to the product measure with density p. At time t ∈ $\mathbb{N}$, the set of infected sites At is the union of At-1 and the set of all x ∈ $\mathbb{Z}$d such that x + X ∈ At-1 for some X ∈ $\mathcal{U}$. Our model may alternatively be thought of as bootstrap percolation on $\mathbb{Z}$d with arbitrary update rules, and for this reason we call it $\mathcal{U}$-bootstrap percolation.
In two dimensions, we give a classification of $\mathcal{U}$-bootstrap percolation models into three classes – supercritical, critical and subcritical – and we prove results about the phase transitions of all models belonging to the first two of these classes. More precisely, we show that the critical probability for percolation on ($\mathbb{Z}$/n$\mathbb{Z}$)2 is (log n)−Θ(1) for all models in the critical class, and that it is n−Θ(1) for all models in the supercritical class.
The results in this paper are the first of any kind on bootstrap percolation considered in this level of generality, and in particular they are the first that make no assumptions of symmetry. It is the hope of the authors that this work will initiate a new, unified theory of bootstrap percolation on $\mathbb{Z}$d.
The asymptotic behaviour of many locally branching epidemic models can, at least to first order, be deduced from the limit theory of two branching processes. The first is Whittle's (1955) branching approximation to the early stages of the epidemic, the phase in which approximately exponential growth takes place. The second is the susceptibility approximation; the backward branching process that approximates the history of the contacts that would lead to an individual becoming infected. The simplest coupling arguments for demonstrating the closeness of these branching process approximations do not keep the processes identical for quite long enough. Thus, arguments showing that the differences are unimportant are also needed. In this paper we show that, for some models, couplings can be constructed that are sufficiently accurate for this extra step to be dispensed with.
Consider two independent Goldstein-Kac telegraph processes X1(t) and X2(t) on the real line ℝ. The processes Xk(t), k = 1, 2, describe stochastic motions at finite constant velocities c1 > 0 and c2 > 0 that start at the initial time instant t = 0 from the origin of ℝ and are controlled by two independent homogeneous Poisson processes of rates λ1 > 0 and λ2 > 0, respectively. We obtain a closed-form expression for the probability distribution function of the Euclidean distance ρ(t) = |X1(t) - X2(t)|, t > 0, between these processes at an arbitrary time instant t > 0. Some numerical results are also presented.
Let 𝓈 be a finite or countable set. Given a matrix F = (Fij)i,j∈𝓈 of distribution functions on R and a quasistochastic matrix Q = (qij)i,j∈𝓈, i.e. an irreducible nonnegative matrix with maximal eigenvalue 1 and associated unique (modulo scaling) positive left and right eigenvectors u and v, the matrix renewal measure ∑n≥0Qn ⊗ F*n associated with Q ⊗ F := (qijFij)i,j∈𝓈 (see below for precise definitions) and a related Markov renewal equation are studied. This was done earlier by de Saporta (2003) and Sgibnev (2006, 2010) by drawing on potential theory, matrix-analytic methods, and Wiener-Hopf techniques. In this paper we describe a probabilistic approach which is quite different and starts from the observation that Q ⊗ F becomes an ordinary semi-Markov matrix after a harmonic transform. This allows us to relate Q ⊗ F to a Markov random walk {(Mn, Sn)}n≥0 with discrete recurrent driving chain {Mn}n≥0. It is then shown that renewal theorems including a Choquet-Deny-type lemma may be easily established by resorting to standard renewal theory for ordinary random walks. The paper concludes with two typical examples.
In this paper some important properties of the generalized Pólya process are derived and their applications are discussed. The generalized Pólya process is defined based on the stochastic intensity. By interpreting the defined stochastic intensity of the generalized Pólya process, the restarting property of the process is discussed. Based on the restarting property of the process, the joint distribution of the number of events is derived and the conditional joint distribution of the arrival times is also obtained. In addition, some properties of the compound process defined for the generalized Pólya process are derived. Furthermore, a new type of repair is defined based on the process and its application to the area of reliability is discussed. Several examples illustrating the applications of the obtained properties to various areas are suggested.
In this paper we derive mixture representations for the reliability functions of the conditional residual life and inactivity time of a coherent system with n independent and identically distributed components. Based on these mixture representations we carry out stochastic comparisons on the conditional residual life, and the inactivity time of two coherent systems with independent and identical components.
In this article we study a biased version of the naming game in which players are located on a connected graph and interact through successive conversations in order to select a common name for a given object. Initially, all the players use the same word B except for one bilingual individual who also uses word A. Both words are attributed a fitness, which measures how often players speak depending on the words they use and how often each word is spoken by bilingual individuals. The limiting behavior depends on a single parameter, ϕ, denoting the ratio of the fitness of word A to the fitness of word B. The main objective is to determine whether word A can invade the system and become the new linguistic convention. From the point of view of the mean-field approximation, invasion of word A is successful if and only if ϕ > 3, a result that we also prove for the process on complete graphs relying on the optimal stopping theorem for supermartingales and random walk estimates. In contrast, for the process on the one-dimensional lattice, word A can invade the system whenever ϕ > 1.053, indicating that the probability of invasion and the critical value for ϕ strongly depend on the degree of the graph. The system on regular lattices in higher dimensions is also studied by comparing the process with percolation models.
We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional workload process. Tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, the presence of heavy tails totally changes these asymptotics. Here we focus on the case of strong stability where both nodes release fluid at sufficiently high speeds to minimise their mutual influence. We show that, as in the one-dimensional case, big jumps provide the main cause for workloads to become large, but now they can have multidimensional features. We first find the weak tail asymptotics of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs. In this analysis, decomposition formulae for the stationary distribution play a key role. Then we employ sample-path arguments to find the exact tail asymptotics of a directional marginal at renewal arrival epochs assuming one-dimensional batch arrivals.
This paper is an investigation into the reliability and stochastic properties of three-state networks. We consider a single-step network consisting of n links and we assume that the links are subject to failure. We assume that the network can be in three states, up (K = 2), partial performance (K = 1), and down (K = 0). Using the concept of the two-dimensional signature, we study the residual lifetimes of the networks under different scenarios on the states and the number of failed links of the network. In the process of doing so, we define variants of the concept of the dynamic signature in a bivariate setting. Then, we obtain signature based mixture representations of the reliability of the residual lifetimes of the network states under the condition that the network is in state K = 2 (or K = 1) and exactly k links in the network have failed. We prove preservation theorems showing that stochastic orderings and dependence between the elements of the dynamic signatures (which relies on the network structure) are preserved by the residual lifetimes of the states of the network (which relies on the network ageing). Various illustrative examples are also provided.
Simple random walks on a partially directed version of Z2 are considered. More precisely, vertical edges between neighbouring vertices of Z2 can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function; the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of simple random walk that is recurrent or transient, and show that there exists a critical value of the decay power, above which it is almost surely recurrent and below which it is almost surely transient.
We consider a stationary face-to-face tessellation X of Rd and introduce several percolation models by colouring some of the faces black in a consistent way. Our main model is cell percolation, where cells are declared black with probability p and white otherwise. We are interested in geometric properties of the union Z of black faces. Under natural integrability assumptions, we first express asymptotic mean values of intrinsic volumes in terms of Palm expectations associated with the faces. In the second part of the paper we focus on cell percolation on normal tessellations and study asymptotic covariances of intrinsic volumes of Z ∩ W, where the observation window W is assumed to be a convex body. Special emphasis is given to the planar case where the formulae become more explicit, though we need to assume the existence of suitable asymptotic covariances of the face processes of X. We check these assumptions in the important special case of a Poisson-Voronoi tessellation.
Consider a bipartite random geometric graph on the union of two independent homogeneous Poisson point processes in d-space, with distance parameter r and intensities λ and μ. We show for d ≥ 2 that if λ is supercritical for the one-type random geometric graph with distance parameter 2r, there exists μ such that (λ, μ) is supercritical (this was previously known for d = 2). For d = 2, we also consider the restriction of this graph to points in the unit square. Taking μ = τ λ for fixed τ, we give a strong law of large numbers as λ → ∞ for the connectivity threshold of this graph.
The stochastic sequential assignment problem assigns distinct workers to sequentially arriving tasks with stochastic parameters. In this paper the assignments are performed so as to minimize the threshold probability, which is the probability of the long-run reward per task failing to achieve a target value (threshold). As the number of tasks approaches infinity, the problem is studied for independent and identically distributed (i.i.d.) tasks with a known distribution function and also for tasks that are derived from r distinct unobservable distributions (governed by a Markov chain). Stationary optimal policies are presented, which simultaneously minimize the threshold probability and achieve the optimal long-run expected reward per task.
In this paper we consider some nonstandard renewal risk models with some dependent claim sizes and stochastic return, where an insurance company is allowed to invest her/his wealth in financial assets, and the price process of the investment portfolio is described as a geometric Lévy process. When the claim size distribution belongs to some classes of heavy-tailed distributions and a constraint is imposed on the Lévy process in terms of its Laplace exponent, we obtain some asymptotic formulae for the tail probability of discounted aggregate claims and ruin probabilities holding uniformly for some finite or infinite time horizons.