We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we derive limit theorems for the conditional distribution of X1 given Sn=sn as n→ ∞, where the Xi are independent and identically distributed (i.i.d.) random variables, Sn=X1+··· +Xn, and sn/n converges or sn ≡ s is constant. We obtain convergence in total variation of PX1∣ Sn/n=s to a distribution associated to that of X1 and of PnX1∣ Sn=s to a gamma distribution. The case of stable distributions (to which the method of associated distributions cannot be applied) is studied in detail.
Based on pathwise duality constructions, several new results on truncated queues and storage systems of the G/M/1 type are derived by transforming the workload (content) processes into certain ‘dual’ M/G/1-type processes. We consider queueing systems in which (a) any service requirement that would increase the total workload beyond the capacity is truncated so as to keep the associated sojourn time below a certain constant, or (b) new arrivals do not enter the system if they have to wait more than one time unit in line. For these systems, we derive the steady-state distributions of the workload and the numbers of customers present in the systems as well as the distributions of the lengths of busy and idle periods. Moreover, we use the duality approach to study finite capacity storage systems with general state-dependent outflow rates. Here our duality leads to a Markovian finite storage system with state-dependent jump sizes whose content level process can be analyzed using level crossing techniques. We also derive a connection between the steady-state densities of the non-Markovian continuous-time content level process of the G/M/1 finite storage system with state-dependent outflow rule and the corresponding embedded sequence of peak points (local maxima).
We study a multiclass Markovian queueing network with switchover across a set of many-server stations. New arrivals to each station follow a nonstationary Poisson process. Each job waiting in queue may, after some exponentially distributed patience time, switch over to another station or leave the network following a probabilistic and state-dependent mechanism. We analyze the performance of such networks under the many-server heavy-traffic limiting regimes, including the critically loaded quality-and-efficiency-driven (QED) regime, and the overloaded efficiency-driven (ED) regime. We also study the limits corresponding to mixing the underloaded quality-driven (QD) regime with the QED and ED regimes. We establish fluid and diffusion limits of the queue-length processes in all regimes. The fluid limits are characterized by ordinary differential equations. The diffusion limits are characterized by stochastic differential equations, with a piecewise-linear drift term and a constant (QED) or time-varying (ED) covariance matrix. We investigate the load balancing effect of switchover in the mixed regimes, demonstrating the migration of workload from overloaded stations to underloaded stations and quantifying the load balancing impact of switchover probabilities.
This paper is based on works presented at the 2012 Applied Probability Trust Lecture in Sheffield; its main purpose is to survey the recent asymptotic results of Bertoin (2012a) and Bertoin and Uribe Bravo (2012b) about Bernoulli bond percolation on certain large random trees with logarithmic height. We also provide a general criterion for the existence of giant percolation clusters in large trees, which answers a question raised by David Croydon.
In reliability a number of failure processes for repairable items are described by point processes, depending on the types of repairs being performed on failures of items. In this paper we describe the failure processes of repairable items from heterogeneous populations and study the stochastic predictions of future processes which utilize the failure/repair history. Two types of repair processes, perfect and minimal repair processes, will be considered. The results will be derived under a general stochastic formulation/setting. Applications of the obtained results to many different areas will be discussed and, specifically, some reliability applications will be illustrated in detail.
In this paper we generalize the martingale of Kella and Whitt to the setting of Lévy-type processes and show that the (local) martingales obtained are in fact square-integrable martingales which upon dividing by the time index converge to zero almost surely and in L2. The reflected Lévy-type process is considered as an example.
We consider the bipartite matching model of customers and servers introduced by Caldentey, Kaplan and Weiss (2009). Customers and servers play symmetrical roles. There are finite sets C and S of customer and server classes, respectively. Time is discrete and at each time step one customer and one server arrive in the system according to a joint probability measure μ on C× S, independently of the past. Also, at each time step, pairs of matched customers and servers, if they exist, depart from the system. Authorized matchings are given by a fixed bipartite graph (C, S, E⊂ C × S). A matching policy is chosen, which decides how to match when there are several possibilities. Customers/servers that cannot be matched are stored in a buffer. The evolution of the model can be described by a discrete-time Markov chain. We study its stability under various admissible matching policies, including ML (match the longest), MS (match the shortest), FIFO (match the oldest), RANDOM (match uniformly), and PRIORITY. There exist natural necessary conditions for stability (independent of the matching policy) defining the maximal possible stability region. For some bipartite graphs, we prove that the stability region is indeed maximal for any admissible matching policy. For the ML policy, we prove that the stability region is maximal for any bipartite graph. For the MS and PRIORITY policies, we exhibit a bipartite graph with a non-maximal stability region.
This paper builds a mixture representation of the reliability function of the conditional residual lifetime of a coherent system in terms of the reliability functions of conditional residual lifetimes of order statistics. Some stochastic ordering properties for the conditional residual lifetime of a coherent system with independent and identically distributed components are obtained, based on the stochastically ordered coefficient vectors.
We consider a generalized telegraph process which follows an alternating renewal process and is subject to random jumps. More specifically, consider a particle at the origin of the real line at time t=0. Then it goes along two alternating velocities with opposite directions, and performs a random jump toward the alternating direction at each velocity reversal. We develop the distribution of the location of the particle at an arbitrary fixed time t, and study this distribution under the assumption of exponentially distributed alternating random times. The cases of jumps having exponential distributions with constant rates and with linearly increasing rates are treated in detail.
In this note, the sequence of the interarrivals of a stationary Markovian arrival process is shown to be ρ-mixing with a geometric rate of convergence when the driving process is ρ-mixing. This provides an answer to an issue raised in the recent work of Ramirez-Cobo and Carrizosa (2012) on the geometric convergence of the autocorrelation function of the stationary Markovian arrival process.
The classical bomber problem concerns properties of the optimal allocation policy of a given number, n, of anti-aircraft missiles, with which an airplane is equipped. The airplane begins at a distance t >0 from its destination and uses some of the anti-aircraft missiles when intercepted by enemy planes that appear according to a homogeneous Poisson process. The goal is to maximize the probability of reaching its destination. The fighter problem deals with a similar situation, but the goal is to shoot down as many enemy planes as possible. The optimal allocation policies are dynamic, depending upon both the number of missiles and the time which remains to reach the destination when the enemy is met. The present paper generalizes these problems by allowing the number of enemy planes to have any distribution, not just Poisson. This implies that the optimal strategies can no longer be dynamic, and are, in our terminology, offline. We show that properties similar to those holding for the classical problems hold also in the present case. Whether certain properties hold that remain open questions in the dynamic version are resolved in the offline version. Since ‘time’ is no longer a meaningful way to parametrize the distributions for the number of encounters, other more general orderings of distributions are needed. Numerical comparisons between the dynamic and offline approaches are given.
Let {X(t):t∈ℝ} be the integrated on–off process with regularly varying on-periods, and let {Y(t):t∈ℝ} be a centered Lévy process with regularly varying positive jumps (independent of X(·)). We study the exact asymptotics of ℙ(supt≥0{X(t)+Y(t)-ct}>u) as u→∞, with special attention to the case r=c, where r is the increase rate of the on–off process during the on-periods.
Known results on the moments of the distribution generated by the two-locus Wright–Fisher diffusion model, and the duality between the diffusion process and the ancestral process with recombination are briefly summarized. A numerical method for computing moments using a Markov chain Monte Carlo simulation and a method to compute closed-form expressions of the moments are presented. By applying the duality argument, the properties of the ancestral recombination graph are studied in terms of the moments.
The Halfin–Whitt regime, or the quality-and-efficiency-driven (QED) regime, for multiserver systems refers to a situation with many servers, a critical load, and yet favorable system performance. We apply this regime to the classical multiserver loss system with slow retrials. We derive nondegenerate limiting expressions for the main steady-state performance measures, including the retrial rate and the blocking probability. It is shown that the economies of scale associated with the QED regime persist for systems with retrials, although in situations when the load becomes extremely critical the retrials cause deteriorated performance. Most of our results are obtained by a detailed analysis of Cohen's equation that defines the retrial rate in an implicit way. The limiting expressions are established by studying prelimit behavior and exploiting the connection between Cohen's equation and Mills' ratio for the Gaussian and Poisson distributions.
In this note we find a new result concerning the asymptotic expected number of passages of a finite or infinite interval (x,x+h) as x→∞ for a random walk with increments having a positive expected value. If the increments are distributed like X then the limit for 0<h<∞ turns out to have the form Emin(|X|,h)/EX, which unexpectedly is independent of h for the special case where |X|≤b<∞ almost surely and h>b. When h=∞, the limit is Emax(X,0)/EX. For the case of a simple random walk, a more pedestrian derivation of the limit is given.
We study the exact asymptotics for the distribution of the first time, τx, a Lévy process Xt crosses a fixed negative level -x. We prove that ℙ{τx >t} ~V(x) ℙ{Xt≥0}/t as t→∞ for a certain function V(x). Using known results for the large deviations of random walks, we obtain asymptotics for ℙ{τx>t} explicitly in both light- and heavy-tailed cases.
We consider a branching population where individuals have independent and identically distributed (i.i.d.) life lengths (not necessarily exponential) and constant birth rates. We let Nt denote the population size at time t. We further assume that all individuals, at their birth times, are equipped with independent exponential clocks with parameter δ. We are interested in the genealogical tree stopped at the first time T when one of these clocks rings. This question has applications in epidemiology, population genetics, ecology, and queueing theory. We show that, conditional on {T<∞}, the joint law of (Nt, T, X(T)), where X(T) is the jumping contour process of the tree truncated at time T, is equal to that of (M, -IM, Y′M) conditional on {M≠0}. Here M+1 is the number of visits of 0, before some single, independent exponential clock e with parameter δ rings, by some specified Lévy process Y without negative jumps reflected below its supremum; IM is the infimum of the path YM, which in turn is defined as Y killed at its last visit of 0 before e; and Y′M is the Vervaat transform of YM. This identity yields an explanation for the geometric distribution of NT (see Kitaev (1993) and Trapman and Bootsma (2009)) and has numerous other applications. In particular, conditional on {NT=n}, and also on {NT=n,T<a}, the ages and residual lifetimes of the n alive individuals at time T are i.i.d. and independent of n. We provide explicit formulae for this distribution and give a more general application to outbreaks of antibiotic-resistant bacteria in the hospital.
Sengupta (1989) showed that, for the first-come–first-served (FCFS) G/G/1 queue, the workload and attained waiting time of a customer in service have the same stationary distribution. Sakasegawa and Wolff (1990) derived a sample path version of this result, showing that the empirical distribution of the workload values over a busy period of a given sample path is identical to that of the attained waiting time values over the same period. For a given sample path of an FCFS G/G/s queue, we construct a dual sample path of a dual queue which is FCFS G/G/s in reverse time. It is shown that the workload process on the original sample path is identical to the total attained waiting time process on the dual sample path. As an application of this duality relation, we show that, for a time-stationary FCFS M/M/s/k queue, the workload process is equal in distribution to the time-reversed total attained waiting time process.
In this paper we introduce discrete-time semi-Markov random evolutions (DTSMREs) and study asymptotic properties, namely, averaging, diffusion approximation, and diffusion approximation with equilibrium by the martingale weak convergence method. The controlled DTSMREs are introduced and Hamilton–Jacobi–Bellman equations are derived for them. The applications here concern the additive functionals (AFs), geometric Markov renewal chains (GMRCs), and dynamical systems (DSs) in discrete time. The rates of convergence in the limit theorems for DTSMREs and AFs, GMRCs, and DSs are also presented.
Sequential order statistics can be used to describe the ordered lifetimes of components in a system, where the failure of a component may affect the performance of remaining components. In this paper mixture representations of the residual lifetime and the inactivity time of systems with such failure-dependent components are considered. Stochastic comparisons of differently structured systems are obtained and properties of the weights in the mixture representations are examined. Furthermore, corresponding representations of the residual lifetime and the inactivity time of a system given the additional information about a previous failure time are derived.