We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a real reductive group and $Z=G/H$ a unimodular homogeneous $G$ space. The space $Z$ is said to satisfy VAI (vanishing at infinity) if all smooth vectors in the Banach representations $L^{p}(Z)$ vanish at infinity, $1\leqslant p<\infty$. For $H$ connected we show that $Z$ satisfies VAI if and only if it is of reductive type.
To a Lie groupoid over a compact base $M$, the associated group of bisection is an (infinite-dimensional) Lie group. Moreover, under certain circumstances one can reconstruct the Lie groupoid from its Lie group of bisections. In the present article we consider functorial aspects of these construction principles. The first observation is that this procedure is functorial (for morphisms fixing $M$). Moreover, it gives rise to an adjunction between the category of Lie groupoids over $M$ and the category of Lie groups acting on $M$. In the last section we then show how to promote this adjunction to almost an equivalence of categories.
For a variety with a Whitney stratification by affine spaces, we study categories of motivic sheaves which are constant mixed Tate along the strata. We are particularly interested in those cases where the category of mixed Tate motives over a point is equivalent to the category of finite-dimensional bigraded vector spaces. Examples of such situations include rational motives on varieties over finite fields and modules over the spectrum representing the semisimplification of de Rham cohomology for varieties over the complex numbers. We show that our categories of stratified mixed Tate motives have a natural weight structure. Under an additional assumption of pointwise purity for objects of the heart, tilting gives an equivalence between stratified mixed Tate sheaves and the bounded homotopy category of the heart of the weight structure. Specializing to the case of flag varieties, we find natural geometric interpretations of graded category ${\mathcal{O}}$ and Koszul duality.
We prove that all convolution products of pairs of continuous orbital measures in rank one, compact symmetric spaces are absolutely continuous and determine which convolution products are in $L^{2}$ (meaning that their density function is in $L^{2}$). We characterise the pairs whose convolution product is either absolutely continuous or in $L^{2}$ in terms of the dimensions of the corresponding double cosets. In particular, we prove that if $G/K$ is not $\text{SU}(2)/\text{SO}(2)$, then the convolution of any two regular orbital measures is in $L^{2}$, while in $\text{SU}(2)/\text{SO}(2)$ there are no pairs of orbital measures whose convolution product is in $L^{2}$.
This paper is about the reduced group $C^{\ast }$-algebras of real reductive groups, and about Hilbert $C^{\ast }$-modules over these $C^{\ast }$-algebras. We shall do three things. First, we shall apply theorems from the tempered representation theory of reductive groups to determine the structure of the reduced $C^{\ast }$-algebra (the result has been known for some time, but it is difficult to assemble a full treatment from the existing literature). Second, we shall use the structure of the reduced $C^{\ast }$-algebra to determine the structure of the Hilbert $C^{\ast }$-bimodule that represents the functor of parabolic induction. Third, we shall prove that the parabolic induction bimodule admits a secondary inner product, using which we can define a functor of parabolic restriction in tempered representation theory. We shall prove in a sequel to this paper that parabolic restriction is adjoint, on both the left and the right, to parabolic induction in the context of tempered unitary Hilbert space representations.
We raise a question of whether the Riesz transform on $\mathbb{T}^{n}$ or $\mathbb{Z}^{n}$ is characterized by the ‘maximal semigroup symmetry’ that the transform satisfies. We prove that this is the case if and only if the dimension is one, two or a multiple of four. This generalizes a theorem of Edwards and Gaudry for the Hilbert transform on $\mathbb{T}$ and $\mathbb{Z}$ in the one-dimensional case, and extends a theorem of Stein for the Riesz transform on $\mathbb{R}^{n}$. Unlike the $\mathbb{R}^{n}$ case, we show that there exist infinitely many linearly independent multiplier operators that enjoy the same maximal semigroup symmetry as the Riesz transforms on $\mathbb{T}^{n}$ and $\mathbb{Z}^{n}$ if the dimension $n$ is greater than or equal to three and is not a multiple of four.
We consider the rigid monoidal category of character sheaves on a smooth commutative group scheme $G$ over a finite field $k$, and expand the scope of the function-sheaf dictionary from connected commutative algebraic groups to this setting. We find the group of isomorphism classes of character sheaves on $G$, and show that it is an extension of the group of characters of $G(k)$ by a cohomology group determined by the component group scheme of $G$. We also classify all morphisms in the category character sheaves on $G$. As an application, we study character sheaves on Greenberg transforms of locally finite type Néron models of algebraic tori over local fields. This provides a geometrization of quasicharacters of $p$-adic tori.
We prove certain depth bounds for Arthur’s endoscopic transfer of representations from classical groups to the corresponding general linear groups over local fields of characteristic 0, with some restrictions on the residue characteristic. We then use these results and the method of Deligne and Kazhdan of studying representation theory over close local fields to obtain, under some restrictions on the characteristic, the local Langlands correspondence for split classical groups over local function fields from the corresponding result of Arthur in characteristic 0.
Let $\mathbf{G}$ be the connected reductive group of type $E_{7,3}$ over $\mathbb{Q}$ and $\mathfrak{T}$ be the corresponding symmetric domain in $\mathbb{C}^{27}$. Let ${\rm\Gamma}=\mathbf{G}(\mathbb{Z})$ be the arithmetic subgroup defined by Baily. In this paper, for any positive integer $k\geqslant 10$, we will construct a (non-zero) holomorphic cusp form on $\mathfrak{T}$ of weight $2k$ with respect to ${\rm\Gamma}$ from a Hecke cusp form in $S_{2k-8}(\text{SL}_{2}(\mathbb{Z}))$. We follow Ikeda’s idea of using Siegel’s Eisenstein series, their Fourier–Jacobi expansions, and the compatible family of Eisenstein series.
Let $R$ be a large field of characteristic $p$. We classify the supersingular simple modules of the pro-$p$-Iwahori Hecke $R$-algebra ${\mathcal{H}}$ of a general reductive $p$-adic group $G$. We show that the functor of pro-$p$-Iwahori invariants behaves well when restricted to the representations compactly induced from an irreducible smooth $R$-representation $\unicode[STIX]{x1D70C}$ of a special parahoric subgroup $K$ of $G$. We give an almost-isomorphism between the center of ${\mathcal{H}}$ and the center of the spherical Hecke algebra ${\mathcal{H}}(G,K,\unicode[STIX]{x1D70C})$, and a Satake-type isomorphism for ${\mathcal{H}}(G,K,\unicode[STIX]{x1D70C})$. This generalizes results obtained by Ollivier for $G$ split and $K$ hyperspecial to $G$ general and $K$ special.
Let $F$ be a non-Archimedean local field, and let $G^{\sharp }$ be the group of $F$-rational points of an inner form of $\text{SL}_{n}$. We study Hecke algebras for all Bernstein components of $G^{\sharp }$, via restriction from an inner form $G$ of $\text{GL}_{n}(F)$.
For any packet of L-indistinguishable Bernstein components, we exhibit an explicit algebra whose module category is equivalent to the associated category of complex smooth $G^{\sharp }$-representations. This algebra comes from an idempotent in the full Hecke algebra of $G^{\sharp }$, and the idempotent is derived from a type for $G$. We show that the Hecke algebras for Bernstein components of $G^{\sharp }$ are similar to affine Hecke algebras of type $A$, yet in many cases are not Morita equivalent to any crossed product of an affine Hecke algebra with a finite group.
We introduce an elliptic version of the Grothendieck–Springer sheaf and establish elliptic analogues of the basic results of Springer theory. From a geometric perspective, our constructions specialize geometric Eisenstein series to the resolution of degree-zero, semistable $G$-bundles by degree-zero $B$-bundles over an elliptic curve $E$. From a representation theory perspective, they produce a full embedding of representations of the elliptic or double affine Weyl group into perverse sheaves with nilpotent characteristic variety on the moduli of $G$-bundles over $E$. The resulting objects are principal series examples of elliptic character sheaves, objects expected to play the role of character sheaves for loop groups.
Let ${\mathcal{K}}$ be an imaginary quadratic field. Let ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ be irreducible generic cohomological automorphic representation of $\text{GL}(n)/{\mathcal{K}}$ and $\text{GL}(n-1)/{\mathcal{K}}$, respectively. Each of them can be given two natural rational structures over number fields. One is defined by the rational structure on topological cohomology, and the other is given in terms of the Whittaker model. The ratio between these rational structures is called a Whittaker period. An argument presented by Mahnkopf and Raghuram shows that, at least if ${\rm\Pi}$ is cuspidal and the weights of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ are in a standard relative position, the critical values of the Rankin–Selberg product $L(s,{\rm\Pi}\times {\rm\Pi}^{\prime })$ are essentially algebraic multiples of the product of the Whittaker periods of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$. We show that, under certain regularity and polarization hypotheses, the Whittaker period of a cuspidal ${\rm\Pi}$ can be given a motivic interpretation, and can also be related to a critical value of the adjoint $L$-function of related automorphic representations of unitary groups. The resulting expressions for critical values of the Rankin–Selberg and adjoint $L$-functions are compatible with Deligne’s conjecture.
Under endoscopic assumptions about $L$-packets of unitary groups, we prove the local Gan–Gross–Prasad conjecture for tempered representations of unitary groups over $p$-adic fields. Roughly, this conjecture says that branching laws for $U(n-1)\subset U(n)$ can be computed using epsilon factors.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.
A finitely generated subgroup ${\rm\Gamma}$ of a real Lie group $G$ is said to be Diophantine if there is ${\it\beta}>0$ such that non-trivial elements in the word ball $B_{{\rm\Gamma}}(n)$ centered at $1\in {\rm\Gamma}$ never approach the identity of $G$ closer than $|B_{{\rm\Gamma}}(n)|^{-{\it\beta}}$. A Lie group $G$ is said to be Diophantine if for every $k\geqslant 1$ a random $k$-tuple in $G$ generates a Diophantine subgroup. Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in this direction. We give a characterization of Diophantine nilpotent Lie groups in terms of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups of class at most $5$, or derived length at most $2$, as well as rational nilpotent Lie groups are Diophantine. We also find that there are non-Diophantine nilpotent and solvable (non-nilpotent) Lie groups.
We define a pseudometric on the set of all unbounded subsets of a metric space. The Kolmogorov quotient of this pseudometric space is a complete metric space. The definition of the pseudometric is guided by the principle that two unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this pseudometric we introduce and study a general concept of boundaries of metric spaces. Such a boundary is the closure of a subset in the Kolmogorov quotient determined by an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated group (or more general of a compactly generated, locally compact Hausdorff group). We show that these boundaries are quasi-isometric invariants and determine them in the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces). In addition we apply this concept to vertex-transitive graphs with polynomial growth and to random walks on nilpotent groups.
In this paper, we first deduce a formula of S-curvature of homogeneous Finsler spaces in terms of Killing vector fields. Then we prove that a homogeneous Finsler space has isotropic S-curvature if and only if it has vanishing S-curvature. In the special case that the homogeneous Finsler space is a Randers space, we give an explicit formula which coincides with the previous formula obtained by the second author using other methods.
Suppose that $G$ is a connected reductive algebraic group defined over $\mathbf{R}$, $G(\mathbf{R})$ is its group of real points, ${\it\theta}$ is an automorphism of $G$, and ${\it\omega}$ is a quasicharacter of $G(\mathbf{R})$. Kottwitz and Shelstad defined endoscopic data associated to $(G,{\it\theta},{\it\omega})$, and conjectured a matching of orbital integrals between functions on $G(\mathbf{R})$ and its endoscopic groups. This matching has been proved by Shelstad, and it yields a dual map on stable distributions. We express the values of this dual map on stable tempered characters as a linear combination of twisted characters, under some additional hypotheses on $G$ and ${\it\theta}$.