We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show the existence of a large family of representations supported by the orbit closure of the determinant. However, the validity of our result is based on the validity of the celebrated ‘Latin square conjecture’ due to Alon and Tarsi or, more precisely, on the validity of an equivalent ‘column Latin square conjecture’ due to Huang and Rota.
Let $(G,G^{\prime })$ be a type I irreducible reductive dual pair in Sp$(W_{\mathbb{R}})$. We assume that $(G,G^{\prime })$ is in the stable range where $G$ is the smaller member. Let $K$ and $K^{\prime }$ be maximal compact subgroups of $G$ and $G^{\prime }$ respectively. Let $\mathfrak{g}=\mathfrak{k}\bigoplus \mathfrak{p}$ and $\mathfrak{g}^{\prime }=\mathfrak{k}^{\prime }\bigoplus \mathfrak{p}^{\prime }$ be the complexified Cartan decompositions of the Lie algebras of $G$ and $G^{\prime }$ respectively. Let $\widetilde{K}$ and $\widetilde{K}^{\prime }$ be the inverse images of $K$ and $K^{\prime }$ in the metaplectic double cover $\widetilde{\text{Sp}}(W_{\mathbb{R}})$ of Sp$(W_{\mathbb{R}})$. Let ${\it\rho}$ be a genuine irreducible $(\mathfrak{g},\widetilde{K})$-module. Our first main result is that if ${\it\rho}$ is unitarizable, then except for one special case, the full local theta lift ${\it\rho}^{\prime }={\rm\Theta}({\it\rho})$ is equal to the local theta lift ${\it\theta}({\it\rho})$. Thus excluding the special case, the full theta lift ${\it\rho}^{\prime }$ is an irreducible and unitarizable $(\mathfrak{g}^{\prime },\widetilde{K}^{\prime })$-module. Our second main result is that the associated variety and the associated cycle of ${\it\rho}^{\prime }$ are the theta lifts of the associated variety and the associated cycle of the contragredient representation ${\it\rho}^{\ast }$ respectively. Finally we obtain some interesting $(\mathfrak{g},\widetilde{K})$-modules whose $\widetilde{K}$-spectrums are isomorphic to the spaces of global sections of some vector bundles on some nilpotent $K_{\mathbb{C}}$-orbits in $\mathfrak{p}^{\ast }$.
The Chevalley involution of a connected, reductive algebraic group over an algebraically closed field takes every semisimple element to a conjugate of its inverse, and this involution is unique up to conjugacy. In the case of the reals we prove the existence of a real Chevalley involution, which is defined over $\mathbb{R}$, takes every semisimple element of $G(\mathbb{R})$ to a $G(\mathbb{R})$-conjugate of its inverse, and is unique up to conjugacy by $G(\mathbb{R})$. We derive some consequences, including an analysis of groups for which every irreducible representation is self-dual, and a calculation of the Frobenius Schur indicator for such groups.
Soit $G$ un groupe réductif connexe déployé sur une extension finie $F$ de $\mathbb{Q}_{p}$. Nous déterminons les extensions entre séries principales continues unitaires $p$-adiques et lisses modulo $p$ de $G(F)$ dans le cas générique. Pour cela, nous calculons le delta-foncteur $\text{H}^{\bullet }\text{Ord}_{B(F)}$ des parties ordinaires dérivées d’Emerton relatif à un sous-groupe de Borel sur certaines représentations induites de $G(F)$ en utilisant une filtration de Bruhat. Ces extensions interviennent dans le programme de Langlands $p$-adique et modulo $p$.
Cet article est une contribution à la fois au calcul du nombre de fibrés de Hitchin sur une courbe projective et à l’explicitation de la partie nilpotente de la formule des traces d’Arthur-Selberg pour une fonction test très simple. Le lien entre les deux questions a été établi dans [Chaudouard, Sur le comptage des fibrés de Hitchin. À paraître aux actes de la conférence en l’honneur de Gérard Laumon]. On décompose cette partie nilpotente en une somme d’intégrales adéliques indexées par les orbites nilpotentes. Pour les orbites de type «régulières par blocs», on explicite complètement ces intégrales en termes de la fonction zêta de la courbe.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ be a connected real semisimple Lie group, $V$ be a finite-dimensional representation of $G$ and $\mu $ be a probability measure on $G$ whose support spans a Zariski-dense subgroup. We prove that the set of ergodic $\mu $-stationary probability measures on the projective space $\mathbb{P}(V)$ is in one-to-one correspondence with the set of compact $G$-orbits in $\mathbb{P}(V)$. When $V$ is strongly irreducible, we prove the existence of limits for the empirical measures. We prove related results over local fields as the finiteness of the set of ergodic $\mu $-stationary measures on the flag variety of $G$.
We prove a simple level-raising result for regular algebraic, conjugate self-dual automorphic forms on $\mathrm{GL}_n$. This gives a systematic way to construct irreducible Galois representations whose residual representation is reducible.
The superbosonization identity of Littelmann, Sommers and Zirnbauer is a new tool for use in studying universality of random matrix ensembles via supersymmetry, which is applicable to non-Gaussian invariant distributions. We give a new conceptual interpretation of this formula, linking it to harmonic superanalysis of Lie supergroups and symmetric superspaces, and in particular, to a supergeneralization of the Riesz distributions. Using the super-Laplace transformation of generalized superfunctions, the theory of which we develop, we reduce the proof to computing the Gindikin gamma function of a Riemannian symmetric superspace, which we determine explicitly.
We calculate equivariant elliptic cohomology of the partial flag variety $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G/H$, where $H\subseteq G$ are compact connected Lie groups of equal rank. We identify the ${\rm RO}(G)$-graded coefficients ${\mathcal{E}} ll_G^*$ as powers of Looijenga’s line bundle and prove that transfer along the map
is calculated by the Weyl–Kac character formula. Treating ordinary cohomology, $K$-theory and elliptic cohomology in parallel, this paper organizes the theoretical framework for the elliptic Schubert calculus of [N. Ganter and A. Ram, Elliptic Schubert calculus, in preparation].
We study the limiting behavior of the discrete spectra associated to the principal congruence subgroups of a reductive group over a number field. While this problem is well understood in the cocompact case (i.e., when the group is anisotropic modulo the center), we treat groups of unbounded rank. For the groups $\text{GL}(n)$ and $\text{SL}(n)$ we show that the suitably normalized spectra converge to the Plancherel measure (the limit multiplicity property). For general reductive groups we obtain a substantial reduction of the problem. Our main tool is the recent refinement of the spectral side of Arthur’s trace formula obtained in [Finis, Lapid, and Müller, Ann. of Math. (2) 174(1) (2011), 173–195; Finis and Lapid, Ann. of Math. (2) 174(1) (2011), 197–223], which allows us to show that for $\text{GL}(n)$ and $\text{SL}(n)$ the contribution of the continuous spectrum is negligible in the limit.
Let $\mathcal{L}^{S}\left (s,\pi ,{\mathfrak{st}}\right )$ be a partial $\mathcal{L}$-function of degree $7$ of a cuspidal automorphic representation $\pi $ of the exceptional group $G_2$. In this paper we construct a Rankin–Selberg integral for
representations having a certain Fourier coefficient.
A compact semisimple Lie algebra $\mathfrak{g}$ induces a Poisson structure $\pi _{\mathbb{S}}$ on the unit sphere $\mathbb{S}(\mathfrak{g}^*)$ in $\mathfrak{g}^*$. We compute the moduli space of Poisson structures on $\mathbb{S}(\mathfrak{g}^*)$ around $\pi _{\mathbb{S}}$. This is the first explicit computation of a Poisson moduli space in dimension greater or equal than three around a degenerate (i.e. not symplectic) Poisson structure.
In this article, we study the homomorphisms between scalar generalized Verma modules. We conjecture that any homomorphism between scalar generalized Verma modules is a composition of elementary homomorphisms. The purpose of this article is to confirm the conjecture for some parabolic subalgebras under the assumption that the infinitesimal characters are regular.
In this paper we generalize the work of Harris–Soudry–Taylor and construct the compatible systems of two-dimensional Galois representations attached to cuspidal automorphic representations of cohomological type on ${\rm GL}_2$ over a CM field with a suitable condition on their central characters. We also prove a local-global compatibility statement, up to semi-simplification.
We give a classification of irreducible admissible modulo $p$ representations of a split$p$-adic reductive group in terms of supersingular representations. This is a generalization of a theorem of Herzig.
We extend our previous work in collaboration with Ngô Bao Châu and give a fixed point formula for the elliptic part of moduli spaces of $G$-shtukas with arbitrary modifications. Our formula is similar to the fixed point formula of Kottwitz for certain Shimura varieties. Our method is inspired by that of Kottwitz and simpler than that of Lafforgue for the fixed point formula of the moduli space of Drinfeld $\text{GL} (r)$-shtukas.
This paper deals with the Schrödinger equation $i{\partial }_{s} u(\mathbf{z} , t; s)- \mathcal{L} u(\mathbf{z} , t; s)= 0, $ where $ \mathcal{L} $ is the sub-Laplacian on the Heisenberg group. Assume that the initial data $f$ satisfies $\vert f(\mathbf{z} , t)\vert \lesssim {q}_{\alpha } (\mathbf{z} , t), $ where ${q}_{s} $ is the heat kernel associated to $ \mathcal{L} . $ If in addition $\vert u(\mathbf{z} , t; {s}_{0} )\vert \lesssim {q}_{\beta } (\mathbf{z} , t), $ for some ${s}_{0} \in \mathbb{R} \setminus \{ 0\} , $ then we prove that $u(\mathbf{z} , t; s)= 0$ for all $s\in \mathbb{R} $ whenever $\alpha \beta \lt { s}_{0}^{2} . $ This result holds true in the more general context of $H$-type groups. We also prove an analogous result for the Grushin operator on ${ \mathbb{R} }^{n+ 1} . $
Let $G$ be a simple algebraic group. Labelled trivalent graphs called webs can be used to produce invariants in tensor products of minuscule representations. For each web, we construct a configuration space of points in the affine Grassmannian. Via the geometric Satake correspondence, we relate these configuration spaces to the invariant vectors coming from webs. In the case of $G= \mathrm{SL} (3)$, non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is $\mathrm{CAT} (0)$, is explained by the fact that affine buildings are $\mathrm{CAT} (0)$.
The arithmetic fundamental lemma conjecture of the third author connects the derivative of an orbital integral on a symmetric space with an intersection number on a formal moduli space of $p$-divisible groups of Picard type. It arises in the relative trace formula approach to the arithmetic Gan–Gross–Prasad conjecture. We prove this conjecture in the minuscule case.
We study graded group-valued continuously differentiable mappings defined on stratified groups, where differentiability is understood with respect to the group structure. We characterize these mappings by a system of nonlinear first-order PDEs, establishing a quantitative estimate for their difference quotient. This provides us with a mean value estimate that allows us to prove both the inverse mapping theorem and the implicit function theorem. The latter theorem also relies on the fact that the differential admits a proper factorization of the domain into a suitable inner semidirect product. When this splitting property of the differential holds in the target group, then the inverse mapping theorem leads us to the rank theorem. Both implicit function theorem and rank theorem naturally introduce the classes of image sets and level sets. For commutative groups, these two classes of sets coincide and correspond to the usual submanifolds. In noncommutative groups, we have two distinct classes of intrinsic submanifolds. They constitute the so-called intrinsic graphs, that are defined with respect to the algebraic splitting and everywhere possess a unique metric tangent cone equipped with a natural group structure.