To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate a large portfolio of variable annuity (VA) contracts, many insurance companies rely on Monte Carlo simulation, which is computationally intensive. To address this computational challenge, machine learning techniques have been adopted in recent years to estimate the fair market values (FMVs) of a large number of contracts. It is shown that bootstrapped aggregation (bagging), one of the most popular machine learning algorithms, performs well in valuing VA contracts using related attributes. In this article, we highlight the presence of prediction bias of bagging and use the bias-corrected (BC) bagging approach to reduce the bias and thus improve the predictive performance. Experimental results demonstrate the effectiveness of BC bagging as compared with bagging, boosting, and model points in terms of prediction accuracy.
We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals arising in stochastic geometry. As a consequence, we provide almost sure central limit theorems for (i) the total edge length of the k-nearest neighbors random graph, (ii) the clique count in random geometric graphs, and (iii) the volume of the set approximation via the Poisson–Voronoi tessellation.
We discuss a continuous-time Markov branching model in which each individual can trigger an alarm according to a Poisson process. The model is stopped when a given number of alarms is triggered or when there are no more individuals present. Our goal is to determine the distribution of the state of the population at this stopping time. In addition, the state distribution at any fixed time is also obtained. The model is then modified to take into account the possible influence of death cases. All distributions are derived using probability-generating functions, and the approach followed is based on the construction of families of martingales.
We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation, we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a U-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such U-statistics of the Gibbs particle process. A by-product of our approach is a new uniqueness result for Gibbs particle processes.
We study the long-term behaviour of a random walker embedded in a growing sequence of graphs. We define a (generally non-Markovian) real-valued stochastic process, called the knowledge process, that represents the ratio between the number of vertices already visited by the walker and the current size of the graph. We mainly focus on the case where the underlying graph sequence is the growing sequence of complete graphs.
We consider the generalization of the Pólya urn scheme with possibly infinitely many colors, as introduced in [37], [4], [5], and [6]. For countably many colors, we prove almost sure convergence of the urn configuration under the uniform ergodicity assumption on the associated Markov chain. The proof uses a stochastic coupling of the sequence of chosen colors with a branching Markov chain on a weighted random recursive tree as described in [6], [31], and [26]. Using this coupling we estimate the covariance between any two selected colors. In particular, we re-prove the limit theorem for the classical urn models with finitely many colors.
It has been known for nearly a decade that deterministically modeled reaction networks that are weakly reversible and consist of a single linkage class have trajectories that are bounded from both above and below by positive constants (so long as the initial condition has strictly positive components). It is conjectured that the stochastically modeled analogs of these systems are positive recurrent. We prove this conjecture in the affirmative under the following additional assumptions: (i) the system is binary, and (ii) for each species, there is a complex (vertex in the associated reaction diagram) that is a multiple of that species. To show this result, a new proof technique is developed in which we study the recurrence properties of the n-step embedded discrete-time Markov chain.
This article investigates the long-time behavior of conservative affine processes on the cone of symmetric positive semidefinite $d\times d$ matrices. In particular, for conservative and subcritical affine processes we show that a finite $\log$-moment of the state-independent jump measure is sufficient for the existence of a unique limit distribution. Moreover, we study the convergence rate of the underlying transition kernel to the limit distribution: first, in a specific metric induced by the Laplace transform, and second, in the Wasserstein distance under a first moment assumption imposed on the state-independent jump measure and an additional condition on the diffusion parameter.
We introduce a class of non-uniform random recursive trees grown with an attachment preference for young age. Via the Chen–Stein method of Poisson approximation, we find that the outdegree of a node is characterized in the limit by ‘perturbed’ Poisson laws, and the perturbation diminishes as the node index increases. As the perturbation is attenuated, a pure Poisson limit ultimately emerges in later phases. Moreover, we derive asymptotics for the proportion of leaves and show that the limiting fraction is less than one half. Finally, we study the insertion depth in a random tree in this class. For the insertion depth, we find the exact probability distribution, involving Stirling numbers, and consequently we find the exact and asymptotic mean and variance. Under appropriate normalization, we derive a concentration law and a limiting normal distribution. Some of these results contrast with their counterparts in the uniform attachment model, and some are similar.
Modeling taxation of Variable Annuities has been frequently neglected, but accounting for it can significantly improve the explanation of the withdrawal dynamics and lead to a better modeling of the financial cost of these insurance products. The importance of including a model for taxation has first been observed by Moenig and Bauer (2016) while considering a Guaranteed Minimum Withdrawal Benefit (GMWB) Variable Annuity. In particular, they consider the simple Black–Scholes dynamics to describe the underlying security. Nevertheless, GMWB are long-term products, and thus accounting for stochastic interest rate has relevant effects on both the financial evaluation and the policyholder behavior, as observed by Goudenège et al. (2018). In this paper, we investigate the outcomes of these two elements together on GMWB evaluation. To this aim, we develop a numerical framework which allows one to efficiently compute the fair value of a policy. Numerical results show that accounting for both taxation and stochastic interest rate has a determinant impact on the withdrawal strategy and on the cost of GMWB contracts. In addition, it can explain why these products are so popular with people looking for a protected form of investment for retirement.
For independent exponentially distributed random variables $X_i$, $i\in {\mathcal{N}}$, with distinct rates ${\lambda}_i$ we consider sums $\sum_{i\in\mathcal{A}} X_i$ for $\mathcal{A}\subseteq {\mathcal{N}}$ which follow generalized exponential mixture distributions. We provide novel explicit results on the conditional distribution of the total sum $\sum_{i\in {\mathcal{N}}}X_i$ given that a subset sum $\sum_{j\in \mathcal{A}}X_j$ exceeds a certain threshold value $t>0$, and vice versa. Moreover, we investigate the characteristic tail behavior of these conditional distributions for $t\to\infty$. Finally, we illustrate how our probabilistic results can be applied in practice by providing examples from both reliability theory and risk management.
In this article we prove new central limit theorems (CLTs) for several coupled particle filters (CPFs). CPFs are used for the sequential estimation of the difference of expectations with respect to filters which are in some sense close. Examples include the estimation of the filtering distribution associated to different parameters (finite difference estimation) and filters associated to partially observed discretized diffusion processes (PODDP) and the implementation of the multilevel Monte Carlo (MLMC) identity. We develop new theory for CPFs, and based upon several results, we propose a new CPF which approximates the maximal coupling (MCPF) of a pair of predictor distributions. In the context of ML estimation associated to PODDP with time-discretization $\Delta_l=2^{-l}$, $l\in\{0,1,\dots\}$, we show that the MCPF and the approach of Jasra, Ballesio, et al. (2018) have, under certain assumptions, an asymptotic variance that is bounded above by an expression that is of (almost) the order of $\Delta_l$ ($\mathcal{O}(\Delta_l)$), uniformly in time. The $\mathcal{O}(\Delta_l)$ bound preserves the so-called forward rate of the diffusion in some scenarios, which is not the case for the CPF in Jasra et al. (2017).
In this paper, we consider functional limit theorems for Poisson cluster processes. We first present a maximal inequality for Poisson cluster processes. Then we establish a functional central limit theorem under the second moment and a functional moderate deviation principle under the Cramér condition for Poisson cluster processes. We apply these results to obtain a functional moderate deviation principle for linear Hawkes processes.
Suppose k balls are dropped into n boxes independently with uniform probability, where n, k are large with ratio approximately equal to some positive real $\lambda$. The maximum box count has a counterintuitive behavior: first of all, with high probability it takes at most two values $m_n$ or $m_n+1$, where $m_n$ is roughly $\frac{\ln n}{\ln \ln n}$. Moreover, it oscillates between these two values with an unusual periodicity. In order to prove this statement and various generalizations, it is first shown that for $X_1,\ldots,X_n$ independent and identically distributed discrete random variables with common distribution F, under mild conditions, the limiting distribution of their maximum oscillates in three possible families, depending on the tail of the distribution. The result stated at the beginning follows from the ensemble equivalence for the order statistics in various allocations problems, obtained via conditioning limit theory. Results about the number of ties for the maximum, as well as applications, are also provided.
In this paper we first use the distribution of the number of records to demonstrate that the right tail probabilities of counts of rare events are generally better approximated by the right tail probabilities of a Poisson distribution than those of the normal distribution. We then show that the moderate deviations in Poisson approximation generally require an adjustment and, with suitable adjustment, we establish better error estimates of the moderate deviations in Poisson approximation than those in [18]. Our estimates contain no unspecified constants and are easy to apply. We illustrate the use of the theorems via six applications: Poisson-binomial distribution, the matching problem, the occupancy problem, the birthday problem, random graphs, and 2-runs. The paper complements the works [16], [8], and [18].
We investigate stochastic comparisons of parallel systems (corresponding to the largest-order statistics) with respect to the reversed hazard rate and likelihood ratio orders for the proportional reversed hazard rate (PRHR) model. As applications of the main results, we obtain the equivalent characterizations of stochastic comparisons with respect to the reversed hazard rate and likelihood rate orders for the exponentiated generalized gamma and exponentiated Pareto distributions. Our results recover and strengthen some recent results in the literature.
We investigate the Hawkes processes on the positive real line exhibiting both self-excitation and inhibition. Each point of such a point process impacts its future intensity by the addition of a signed reproduction function. The case of a nonnegative reproduction function corresponds to self-excitation, and has been widely investigated in the literature. In particular, there exists a cluster representation of the Hawkes process which allows one to apply known results for Galton–Watson trees. We use renewal techniques to establish limit theorems for Hawkes processes that have reproduction functions which are signed and have bounded support. Notably, we prove exponential concentration inequalities, extending results of Reynaud-Bouret and Roy (2006) previously proven for nonnegative reproduction functions using a cluster representation no longer valid in our case. Importantly, we establish the existence of exponential moments for renewal times of M/G/$\infty$ queues which appear naturally in our problem. These results possess interest independent of the original problem.